Suppr超能文献

激光多普勒振动计测量在正常和病理状态下活人耳中的临床应用。

Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears.

作者信息

Rosowski John J, Nakajima Hideko H, Merchant Saumil N

机构信息

Eaton-Peabody Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.

出版信息

Ear Hear. 2008 Jan;29(1):3-19. doi: 10.1097/AUD.0b013e31815d63a5.

Abstract

The laser-Doppler vibrometer (LDV) is a research tool that can be used to quickly measure the sound-induced velocity of the tympanic membrane near the umbo (the inferior tip of the malleus) in live human subjects and patients. In this manuscript we demonstrate the LDV to be a sensitive and selective tool for the diagnosis and differentiation of various ossicular disorders in patients with intact tympanic membranes and aerated middle ears. Patients with partial or total ossicular interruption or malleus fixation are readily separated from normal-hearing subjects with the LDV. The combination of LDV measurements and air-bone gap can distinguish patients with fixed stapes from those with normal ears. LDV measurements can also help differentiate air-bone gaps produced by ossicular pathologies from those associated with pathologies of inner-ear sound conduction such as a superior semicircular canal dehiscence.

摘要

激光多普勒振动计(LDV)是一种研究工具,可用于快速测量活体人类受试者和患者鼓膜脐部(锤骨下端)附近由声音引起的鼓膜速度。在本手稿中,我们证明了LDV是诊断和区分鼓膜完整且中耳通气的患者各种听骨疾病的灵敏且有选择性的工具。使用LDV可以轻松地将部分或完全听骨中断或锤骨固定的患者与听力正常的受试者区分开来。LDV测量结果与气骨导差相结合,可以区分镫骨固定的患者与正常耳朵的患者。LDV测量还可以帮助区分由听骨病变产生的气骨导差与内耳声音传导病变(如半规管上裂)相关的气骨导差。

相似文献

1
2
Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane.
Otol Neurotol. 2003 Mar;24(2):165-75. doi: 10.1097/00129492-200303000-00008.
4
Laser Doppler vibrometry measurements of human cadaveric tympanic membrane vibration.
J Otolaryngol Head Neck Surg. 2013 Feb 25;42(1):17. doi: 10.1186/1916-0216-42-17.
7
Investigation of the mechanics of Type III stapes columella tympanoplasty using laser-Doppler vibrometry.
Otol Neurotol. 2007 Sep;28(6):782-7. doi: 10.1097/mao.0b013e31811f40fb.
8
New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry.
Otol Neurotol. 2009 Dec;30(8):1049-57. doi: 10.1097/MAO.0b013e31819e622b.
10
Automatic Prediction of Conductive Hearing Loss Using Video Pneumatic Otoscopy and Deep Learning Algorithm.
Ear Hear. 2022;43(5):1563-1573. doi: 10.1097/AUD.0000000000001217. Epub 2022 Mar 29.

引用本文的文献

1
A mechanical lumped-element model of the human middle ear for bone conduction hearing.
Sci Rep. 2025 Jul 28;15(1):27434. doi: 10.1038/s41598-025-09614-7.
2
Minimally Invasive Intraoperative Laser Vibrometry (MIVIB)-A Peroperative Method to Measure Fixation of the Ossicular Chain.
Laryngoscope Investig Otolaryngol. 2025 May 14;10(3):e70158. doi: 10.1002/lio2.70158. eCollection 2025 Jun.
3
A mechanical lumped-element model of the human middle ear for bone conduction hearing.
Res Sq. 2025 Apr 25:rs.3.rs-6262568. doi: 10.21203/rs.3.rs-6262568/v1.
4
Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.
J Assoc Res Otolaryngol. 2025 Feb;26(1):63-75. doi: 10.1007/s10162-024-00971-0. Epub 2025 Jan 14.
5
Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.
Res Sq. 2024 Aug 8:rs.3.rs-4874430. doi: 10.21203/rs.3.rs-4874430/v1.
6
Contemporary Mechanics of Conductive Hearing Loss.
Oper Tech Otolayngol Head Neck Surg. 2024 Mar;35(1):2-10. doi: 10.1016/j.otot.2024.01.001. Epub 2024 Jan 17.
7
Middle Ear Ossicular Joint Changes in Type 2 Diabetes Mellitus: A Histopathological Study.
Laryngoscope. 2024 Jun;134(6):2871-2878. doi: 10.1002/lary.31257. Epub 2024 Jan 4.
8
In Vivo Measurement of Ear Ossicle and Bony Wall Vibration by Sound Stimulation of Cartilage Conduction.
Audiol Res. 2023 Jul 12;13(4):495-505. doi: 10.3390/audiolres13040044.
10
Evaluation of acoustic changes in and the healing outcomes of rat eardrums with pars tensa and pars flaccida perforations.
Laryngoscope Investig Otolaryngol. 2022 Apr 22;7(3):816-824. doi: 10.1002/lio2.797. eCollection 2022 Jun.

本文引用的文献

1
Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome.
Ann Otol Rhinol Laryngol. 2007 Jul;116(7):532-41. doi: 10.1177/000348940711600709.
2
Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal.
Otol Neurotol. 2007 Feb;28(2):250-7. doi: 10.1097/01.mao.0000244370.47320.9a.
3
Superior semicircular canal dehiscence mimicking otosclerotic hearing loss.
Adv Otorhinolaryngol. 2007;65:137-145. doi: 10.1159/000098790.
4
Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1546-51. doi: 10.1073/pnas.0610185103. Epub 2007 Jan 22.
5
Auditory function in patients with surgically treated superior semicircular canal dehiscence.
Otol Neurotol. 2006 Oct;27(7):969-80. doi: 10.1097/01.mao.0000235376.70492.8e.
6
Structures that contribute to middle-ear admittance in chinchilla.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Dec;192(12):1287-311. doi: 10.1007/s00359-006-0159-9. Epub 2006 Aug 30.
8
Clinical manifestations of superior semicircular canal dehiscence.
Laryngoscope. 2005 Oct;115(10):1717-27. doi: 10.1097/01.mlg.0000178324.55729.b7.
9
The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla.
Hear Res. 2005 Dec;210(1-2):53-62. doi: 10.1016/j.heares.2005.07.003. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验