Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Faculté des Arts et des Sciences, Montréal H3C 3J7 QC, Canada.
IEEE Trans Image Process. 2010 Jun;19(6):1610-24. doi: 10.1109/TIP.2010.2044965. Epub 2010 Mar 11.
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
本文提出了一种新的基于马尔可夫随机场(MRF)融合模型的分割方法,旨在结合几种与更简单聚类模型相关的分割结果,以获得更可靠和准确的分割结果。所提出的融合模型源自最近引入的概率 Rand 度量,用于比较一个分割结果与同一图像的一个或多个手动分割。这种非参数度量允许我们轻松地推导出一个吸引人的标签场融合模型,它可以很容易地表示为一个 Gibbs 分布,或者表示为一个定义在完全图上的非平稳 MRF 模型。具体来说,这个 Gibbs 能量模型以每个要融合的分割结果提供的像素标签对的形式,对二进制约束集进行编码。结合先验分布,基于能量的 Gibbs 模型还允许定义一个有趣的惩罚最大概率 Rand 估计器,通过该估计器,融合简单、快速估计的分割结果可以作为文献中现有的复杂分割模型的一个有趣替代方案。该融合框架已成功应用于伯克利图像数据库。本文报告的实验表明,所提出的方法在视觉评估和定量性能度量方面是有效的,并且与文献中最近提出的最好的现有最先进的分割方法相比表现良好。