Airan Raag D, Hu Elbert S, Vijaykumar Ragu, Roy Madhuri, Meltzer Leslie A, Deisseroth Karl
Department of Bioengineering, Stanford University, CA, United States.
Curr Opin Neurobiol. 2007 Oct;17(5):587-92. doi: 10.1016/j.conb.2007.11.003.
For understanding normal and pathological circuit function, capitalizing on the full potential of recent advances in fast optical neural circuit control will depend crucially on fast, intact-circuit readout technology. First, millisecond-scale optical control will be best leveraged with simultaneous millisecond-scale optical imaging. Second, both fast circuit control and imaging should be adaptable to intact-circuit preparations from normal and diseased subjects. Here we illustrate integration of fast optical circuit control and fast circuit imaging, review recent work demonstrating utility of applying fast imaging to quantifying activity flow in disease models, and discuss integration of diverse optogenetic and chemical genetic tools that have been developed to precisely control the activity of genetically specified neural populations. Together these neuroengineering advances raise the exciting prospect of determining the role-specific cell types play in modulating neural activity flow in neuropsychiatric disease.
为了理解正常和病理状态下的神经回路功能,充分利用快速光学神经回路控制的最新进展的全部潜力将关键取决于快速、完整回路的读出技术。首先,毫秒级的光学控制将通过同步的毫秒级光学成像得到最佳利用。其次,快速回路控制和成像都应适用于来自正常和患病受试者的完整回路制备。在这里,我们展示了快速光学回路控制和快速回路成像的整合,回顾了最近的工作,这些工作证明了应用快速成像来量化疾病模型中活动流的效用,并讨论了为精确控制基因指定神经群体的活动而开发的各种光遗传学和化学遗传学工具的整合。这些神经工程进展共同提出了一个令人兴奋的前景,即确定特定角色的细胞类型在调节神经精神疾病中的神经活动流中所起的作用。