Wang Zhihui, Zhang Le, Sagotsky Jonathan, Deisboeck Thomas S
Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
Theor Biol Med Model. 2007 Dec 21;4:50. doi: 10.1186/1742-4682-4-50.
The epidermal growth factor receptor (EGFR) is frequently overexpressed in many cancers, including non-small cell lung cancer (NSCLC). In silico modeling is considered to be an increasingly promising tool to add useful insights into the dynamics of the EGFR signal transduction pathway. However, most of the previous modeling work focused on the molecular or the cellular level only, neglecting the crucial feedback between these scales as well as the interaction with the heterogeneous biochemical microenvironment.
We developed a multiscale model for investigating expansion dynamics of NSCLC within a two-dimensional in silico microenvironment. At the molecular level, a specific EGFR-ERK intracellular signal transduction pathway was implemented. Dynamical alterations of these molecules were used to trigger phenotypic changes at the cellular level. Examining the relationship between extrinsic ligand concentrations, intrinsic molecular profiles and microscopic patterns, the results confirmed that increasing the amount of available growth factor leads to a spatially more aggressive cancer system. Moreover, for the cell closest to nutrient abundance, a phase-transition emerges where a minimal increase in extrinsic ligand abolishes the proliferative phenotype altogether.
Our in silico results indicate that in NSCLC, in the presence of a strong extrinsic chemotactic stimulus (and depending on the cell's location) downstream EGFR-ERK signaling may be processed more efficiently, thereby yielding a migration-dominant cell phenotype and overall, an accelerated spatio-temporal expansion rate.
表皮生长因子受体(EGFR)在包括非小细胞肺癌(NSCLC)在内的多种癌症中经常过度表达。计算机模拟被认为是一种越来越有前景的工具,可为EGFR信号转导通路的动力学提供有用的见解。然而,以前的大多数建模工作仅关注分子或细胞水平,忽略了这些尺度之间的关键反馈以及与异质生化微环境的相互作用。
我们开发了一个多尺度模型,用于研究二维计算机模拟微环境中NSCLC的扩展动力学。在分子水平上,实施了特定的EGFR-ERK细胞内信号转导通路。这些分子的动态变化被用来触发细胞水平的表型变化。通过研究外在配体浓度、内在分子特征和微观模式之间的关系,结果证实增加可用生长因子的量会导致空间上更具侵袭性的癌症系统。此外,对于最接近营养丰富区域的细胞,会出现一种相变,即外在配体的最小增加会完全消除增殖表型。
我们的计算机模拟结果表明,在NSCLC中,在强烈的外在趋化刺激存在的情况下(并取决于细胞的位置),下游EGFR-ERK信号可能会更有效地被处理,从而产生以迁移为主的细胞表型,总体上加快时空扩展速度。