Suppr超能文献

通过可控化学氧化调整Ti6Al4V的表面性能。

Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation.

作者信息

Variola Fabio, Yi Ji-Hyun, Richert Ludovic, Wuest James D, Rosei Federico, Nanci Antonio

机构信息

Institut National de la Recherche Scientifique-Energie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1S2, Canada.

出版信息

Biomaterials. 2008 Apr;29(10):1285-98. doi: 10.1016/j.biomaterials.2007.11.040. Epub 2007 Dec 26.

Abstract

Many efforts have been made to promote cell activity at the surface of implants, mainly by modifying their topography and physicochemical properties. Here we demonstrate the feasibility of creating Ti6Al4V surfaces having both a microtexture and a nanotexture, and show that their properties can be tailored by controlling the length of exposure to a mixture of H2SO4 and H2O2. Scanning electron microscopy (SEM), combined with energy-dispersive X-ray spectroscopy (EDX), indicated that beta-phase grains, which surround larger alpha-phase grains, are etched more rapidly, resulting in a surface composed of microscale cavities with alpha-grain boundaries. Furthermore, high-resolution SEM and atomic force microscopy (AFM) revealed the presence on the surfaces of both alpha- and beta-phase grains of a network of nanopits with mean diameters ranging between 13 and 21 nm. The grain surface roughness increases from about 4 nm on untreated samples to about 12 nm after 4h of treatment. AFM analysis showed that the depth of microscale cavities can be varied in the 10-180 nm range by controlling the extent of chemical etching. Fourier transform infrared spectroscopy (FT-IR), combined with ellipsometry, established that the etching generated an oxide layer with a thickness in the range 15-45 nm. The resulting new surfaces selectively promote the growth of osteoblasts while inhibiting that of fibroblasts, making them promising tools for regulating the activities of cells in biological environments.

摘要

人们已经做出了许多努力来促进植入物表面的细胞活性,主要是通过改变其形貌和物理化学性质。在此,我们展示了创建具有微观纹理和纳米纹理的Ti6Al4V表面的可行性,并表明可以通过控制暴露于硫酸和过氧化氢混合物中的时间长度来调整其性能。扫描电子显微镜(SEM)结合能量色散X射线光谱(EDX)表明,围绕较大α相晶粒的β相晶粒被蚀刻得更快,从而形成了一个由具有α晶粒边界的微观尺度空洞组成的表面。此外,高分辨率SEM和原子力显微镜(AFM)揭示了在α相和β相晶粒表面均存在平均直径在13至21nm之间的纳米坑网络。晶粒表面粗糙度从未处理样品的约4nm增加到处理4小时后的约12nm。AFM分析表明,通过控制化学蚀刻的程度,微观尺度空洞的深度可以在10 - 180nm范围内变化。傅里叶变换红外光谱(FT - IR)结合椭偏仪确定,蚀刻产生了厚度在15 - 45nm范围内的氧化层。由此产生的新表面选择性地促进成骨细胞的生长,同时抑制成纤维细胞的生长,使其成为调节生物环境中细胞活性的有前途的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验