Kitamura Kazuo, Judkewitz Benjamin, Kano Masanobu, Denk Winfried, Häusser Michael
Wolfson Institute for Biomedical Research and Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
Nat Methods. 2008 Jan;5(1):61-7. doi: 10.1038/nmeth1150. Epub 2007 Dec 23.
Here we describe an approach for making targeted patch-clamp recordings from single neurons in vivo, visualized by two-photon microscopy. A patch electrode is used to perfuse the extracellular space surrounding the neuron of interest with a fluorescent dye, thus enabling the neuron to be visualized as a negative image ('shadow') and identified on the basis of its somatodendritic structure. The same electrode is then placed on the neuron under visual control to allow formation of a gigaseal ('shadowpatching'). We demonstrate the reliability and versatility of shadowpatching by performing whole-cell recordings from visually identified neurons in the neocortex and cerebellum of rat and mouse. We also show that the method can be used for targeted in vivo single-cell electroporation of plasmid DNA into identified cell types, leading to stable transgene expression. This approach facilitates the recording, labeling and genetic manipulation of single neurons in the intact native mammalian brain without the need to pre-label neuronal populations.
在此,我们描述了一种在体从单个神经元进行靶向膜片钳记录的方法,该方法通过双光子显微镜进行可视化。使用一个膜片电极用荧光染料灌注感兴趣神经元周围的细胞外空间,从而使神经元能够作为负像(“阴影”)被可视化,并根据其树突 - 胞体结构进行识别。然后在视觉控制下将同一电极放置在神经元上,以形成千兆封接(“阴影膜片钳”)。我们通过在大鼠和小鼠的新皮层和小脑中对视觉识别的神经元进行全细胞记录,证明了阴影膜片钳的可靠性和通用性。我们还表明,该方法可用于将质粒DNA靶向体内单细胞电穿孔到已识别的细胞类型中,从而实现稳定的转基因表达。这种方法有助于在完整的天然哺乳动物大脑中对单个神经元进行记录、标记和基因操作,而无需预先标记神经元群体。