Suppr超能文献

对经美国食品药品监督管理局批准药物的靶点特征进行定量分析。

Quantitative analysis on the characteristics of targets with FDA approved drugs.

作者信息

Sakharkar Meena K, Li Peng, Zhong Zhaowei, Sakharkar Kishore R

机构信息

ADAMs Lab, Mechanical, Aerospace Engineering, Nanyang Technological University, Singapore.

出版信息

Int J Biol Sci. 2007 Dec 10;4(1):15-22. doi: 10.7150/ijbs.4.15.

Abstract

Accumulated knowledge of genomic information, systems biology, and disease mechanisms provide an unprecedented opportunity to elucidate the genetic basis of diseases, and to discover new and novel therapeutic targets from the wealth of genomic data. With hundreds to a few thousand potential targets available in the human genome alone, target selection and validation has become a critical component of drug discovery process. The explorations on quantitative characteristics of the currently explored targets (those without any marketed drug) and successful targets (targeted by at least one marketed drug) could help discern simple rules for selecting a putative successful target. Here we use integrative in silico (computational) approaches to quantitatively analyze the characteristics of 133 targets with FDA approved drugs and 3120 human disease genes (therapeutic targets) not targeted by FDA approved drugs. This is the first attempt to comparatively analyze targets with FDA approved drugs and targets with no FDA approved drug or no drugs available for them. Our results show that proteins with 5 or fewer number of homologs outside their own family, proteins with single-exon gene architecture and proteins interacting with more than 3 partners are more likely to be targetable. These quantitative characteristics could serve as criteria to search for promising targetable disease genes.

摘要

基因组信息、系统生物学和疾病机制方面的知识积累,为阐明疾病的遗传基础以及从海量基因组数据中发现新的治疗靶点提供了前所未有的机遇。仅在人类基因组中就有数百到数千个潜在靶点,靶点的选择和验证已成为药物研发过程的关键环节。对当前已探索靶点(尚无任何上市药物的靶点)和成功靶点(至少有一款上市药物针对的靶点)的定量特征进行探索,有助于找出选择潜在成功靶点的简单规则。在此,我们采用整合的计算机模拟方法,对133个有FDA批准药物的靶点和3120个未被FDA批准药物靶向的人类疾病基因(治疗靶点)的特征进行定量分析。这是首次对有FDA批准药物的靶点与无FDA批准药物或尚无针对它们的药物的靶点进行比较分析。我们的结果表明,在其家族外同源物数量为5个或更少的蛋白质、具有单外显子基因结构的蛋白质以及与3个以上伙伴相互作用的蛋白质更有可能成为可成药靶点。这些定量特征可作为寻找有前景的可成药疾病基因的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272b/2140153/490159d154cd/ijbsv04p0015g02.jpg

相似文献

1
Quantitative analysis on the characteristics of targets with FDA approved drugs.
Int J Biol Sci. 2007 Dec 10;4(1):15-22. doi: 10.7150/ijbs.4.15.
2
Network analysis of FDA approved drugs and their targets.
Mt Sinai J Med. 2007 Apr;74(1):27-32. doi: 10.1002/msj.20002.
3
Expedited Programs for Serious Conditions: An Update on Breakthrough Therapy Designation.
Clin Ther. 2015 Sep;37(9):2104-20. doi: 10.1016/j.clinthera.2015.07.011. Epub 2015 Aug 18.
4
Priority review drugs approved by the FDA and the EMA: time for international regulatory harmonization of pharmaceuticals?
Pharmacoepidemiol Drug Saf. 2015 Jul;24(7):709-15. doi: 10.1002/pds.3793. Epub 2015 May 27.
5
A systematic analysis of FDA-approved anticancer drugs.
BMC Syst Biol. 2017 Oct 3;11(Suppl 5):87. doi: 10.1186/s12918-017-0464-7.
9
From idea to market: the drug approval process.
J Am Board Fam Pract. 2001 Sep-Oct;14(5):362-7.
10
The inadequacy of the reductionist approach in discovering new therapeutic agents against complex diseases.
Exp Biol Med (Maywood). 2018 Aug;243(12):1004-1013. doi: 10.1177/1535370218794365. Epub 2018 Aug 8.

引用本文的文献

1
The Identification of Gene Expression Profiles Associated with Granulomatous Mastitis.
Breast Care (Basel). 2021 Aug;16(4):319-327. doi: 10.1159/000507474. Epub 2020 Oct 29.
2
Drug Target Protein-Protein Interaction Networks: A Systematic Perspective.
Biomed Res Int. 2017;2017:1289259. doi: 10.1155/2017/1289259. Epub 2017 Jun 11.
4
Identifying diabetes-related important protein targets with few interacting partners with the PageRank algorithm.
R Soc Open Sci. 2015 Apr 29;2(4):140252. doi: 10.1098/rsos.140252. eCollection 2015 Apr.
6
Drug repositioning for personalized medicine.
Genome Med. 2012 Mar 30;4(3):27. doi: 10.1186/gm326. eCollection 2012.
7
A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.
PLoS One. 2011 Mar 22;6(3):e14774. doi: 10.1371/journal.pone.0014774.
8
Cancer-drug associations: a complex system.
PLoS One. 2010 Apr 2;5(4):e10031. doi: 10.1371/journal.pone.0010031.
9
Assessing the druggability of protein-protein interactions by a supervised machine-learning method.
BMC Bioinformatics. 2009 Aug 25;10:263. doi: 10.1186/1471-2105-10-263.

本文引用的文献

1
Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
N Engl J Med. 2007 Jun 14;356(24):2457-71. doi: 10.1056/NEJMoa072761. Epub 2007 May 21.
2
Druggability of human disease genes.
Int J Biochem Cell Biol. 2007;39(6):1156-64. doi: 10.1016/j.biocel.2007.02.018. Epub 2007 Mar 7.
3
High-throughput electronic biology: mining information for drug discovery.
Nat Rev Drug Discov. 2007 Mar;6(3):220-30. doi: 10.1038/nrd2265.
4
The drug development crisis: efficiency and safety.
Annu Rev Med. 2007;58:1-16. doi: 10.1146/annurev.med.58.042705.124037.
5
Progress and problems in the exploration of therapeutic targets.
Drug Discov Today. 2006 May;11(9-10):412-20. doi: 10.1016/j.drudis.2006.03.012.
6
DrugBank: a comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72. doi: 10.1093/nar/gkj067.
7
BioGRID: a general repository for interaction datasets.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9. doi: 10.1093/nar/gkj109.
8
Pfam: clans, web tools and services.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51. doi: 10.1093/nar/gkj149.
9
Finding new drug targets in the 21st century.
Drug Discov Today. 2005 Dec;10(23-24):1683-7. doi: 10.1016/S1359-6446(05)03670-6.
10
Predicting protein druggability.
Drug Discov Today. 2005 Dec;10(23-24):1675-82. doi: 10.1016/S1359-6446(05)03624-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验