Loging William, Harland Lee, Williams-Jones Bryn
Computational Biology Group, Pfizer, Groton, Connecticut, USA.
Nat Rev Drug Discov. 2007 Mar;6(3):220-30. doi: 10.1038/nrd2265.
The vast range of in silico resources that are available in life sciences research hold much promise towards aiding the drug discovery process. To fully realize this opportunity, computational scientists must consider the practical issues of data integration and identify how best to apply these resources scientifically. In this article we describe in silico approaches that are driven towards the identification of testable laboratory hypotheses; we also address common challenges in the field. We focus on flexible, high-throughput techniques, which may be initiated independently of 'wet-lab' experimentation, and which may be applied to multiple disease areas. The utility of these approaches in drug discovery highlights the contribution that in silico techniques can make and emphasizes the need for collaboration between the areas of disease research and computational science.
生命科学研究中现有的大量计算机模拟资源有望极大地辅助药物发现过程。为了充分利用这一机遇,计算科学家必须考虑数据整合的实际问题,并确定如何以最佳方式科学地应用这些资源。在本文中,我们描述了旨在识别可在实验室进行验证的假设的计算机模拟方法;我们还讨论了该领域常见的挑战。我们专注于灵活的高通量技术,这些技术可以独立于“湿实验室”实验启动,并且可以应用于多个疾病领域。这些方法在药物发现中的实用性凸显了计算机模拟技术所能做出的贡献,并强调了疾病研究领域与计算科学领域之间开展合作的必要性。