Suppr超能文献

植物根系水分吸收的异速生长比例定律。

Allometric scaling laws for water uptake by plant roots.

作者信息

Biondini Mario

机构信息

School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58105, USA.

出版信息

J Theor Biol. 2008 Mar 7;251(1):35-59. doi: 10.1016/j.jtbi.2007.11.018. Epub 2007 Nov 22.

Abstract

This paper develops scaling laws for plant roots of any arbitrary volume and branching configuration that maximize water uptake. Water uptake can occur along any part of the root network, and thus there is no branch-to-branch fluid conservation. Maximizing water uptake, therefore, involves balancing two flows that are inversely related: axial and radial conductivity. The scaling laws are tested against the root data of 1759 plants from 77 herbaceous species, and compared with those from the WBE model. I further discuss whether the scaling laws are invariant to soil water distribution. A summary of some of the results follows. (1) The optimal radius for a single root (no branches) scales with volume as r approximately volume(2/(8+a))(0<a< or =1). (2) The basic allometric scaling for root radius branches (r(i+1)=betar(i)) is of the form beta=f(N)((2epsilon(N))/(8+a)), where f(N)=A(N)/(n(b)*(1+A(N))), n(b) is the number of branches, and A(N) and epsilon(N) are functions of the number of root diameter classes (not constants as in the WBE model). (3) For large N, beta converges to the beta from the WBE model. For small N, the beta's for the two models diverge, but are highly correlated. (4) The fractal assumption of volume filling of the WBE model are also met in the root model even though they are not explicitly incorporated into it. (5) The WBE model for rigid tubes is an asymptotic solution for large root systems (large N and biomass). (6) The optimal scaling solutions for the root network appears to be independent of soil water distribution or water demand. The data set used for testing is included in the electronic supplementary archive of the journal.

摘要

本文推导了任意体积和分支构型的植物根系的缩放定律,这些定律能使水分吸收最大化。根系网络的任何部分都可发生水分吸收,因此不存在分支间的流体守恒。所以,使水分吸收最大化涉及平衡两个呈反比关系的流量:轴向传导率和径向传导率。针对来自77个草本物种的1759株植物的根系数据对这些缩放定律进行了检验,并与韦斯特-布朗-恩奎斯特(WBE)模型得出的定律进行了比较。我还讨论了这些缩放定律对于土壤水分分布是否具有不变性。部分结果总结如下:(1)单根(无分支)的最优半径随体积缩放,即r约为体积的(2/(8 + a))次方(0 < a ≤ 1)。(2)根半径分支的基本异速生长缩放(r(i + 1)=βr(i))形式为β = f(N)((2ε(N))/(8 + a)),其中f(N)=A(N)/(n(b)*(1 + A(N))),n(b)是分支数,A(N)和ε(N)是根直径类别的函数(不像WBE模型中那样是常数)。(3)对于较大的N,β收敛于WBE模型中的β。对于较小的N,两个模型的β值发散,但高度相关。(4)尽管没有明确纳入WBE模型的体积填充分形假设在根系模型中也得到了满足。(5)刚性管的WBE模型是大型根系(大N和生物量)的渐近解。(6)根系网络的最优缩放解似乎与土壤水分分布或需水量无关。用于检验的数据集包含在该期刊的电子补充档案中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验