Suppr超能文献

小动物的非侵入性生物发光成像

Noninvasive bioluminescence imaging in small animals.

作者信息

Zinn Kurt R, Chaudhuri Tandra R, Szafran April Adams, O'Quinn Darrell, Weaver Casey, Dugger Kari, Lamar Dale, Kesterson Robert A, Wang Xiangdong, Frank Stuart J

机构信息

Laboratory of Multimodal Imaging, University of Alabama, Birmingham, AL 35294-0012, USA.

出版信息

ILAR J. 2008;49(1):103-15. doi: 10.1093/ilar.49.1.103.

Abstract

There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase enzyme with its substrate. Most imaging systems provide 2-dimensional (2D) information in rodents, showing the locations and intensity of light emitted from the animal in pseudo-color scaling. A 3-dimensional (3D) capability for bioluminescence imaging is now available, but is more expensive and less efficient; other disadvantages include the requirement for genetically encoded luciferase, the injection of the substrate to enable light emission, and the dependence of light signal on tissue depth. All of these problems make it unlikely that the method will be extended to human studies. However, in small animal models, bioluminescence imaging is now routinely applied to serially detect the location and burden of xenografted tumors, or identify and measure the number of immune or stem cells after an adoptive transfer. Bioluminescence imaging also makes it possible to track the relative amounts and locations of bacteria, viruses, and other pathogens over time. Specialized applications of bioluminescence also follow tissue-specific luciferase expression in transgenic mice, and monitor biological processes such as signaling or protein interactions in real time. In summary, bioluminescence imaging has become an important component of biomedical research that will continue in the future.

摘要

近年来,在仪器、分析软件、试剂以及将该技术应用于分子成像的创新方法的推动下,生物发光成像在小动物模型中的应用迅速增长。其优势包括技术的敏感性、效率、相对较低的成本以及多功能性。生物发光成像是通过灵敏检测荧光素酶与其底物发生化学反应后发出的光来实现的。大多数成像系统在啮齿动物中提供二维(2D)信息,以伪彩色标度显示动物发出光的位置和强度。现在已有生物发光成像的三维(3D)功能,但成本更高且效率更低;其他缺点包括需要基因编码的荧光素酶、注射底物以实现发光以及光信号对组织深度的依赖性。所有这些问题使得该方法不太可能扩展到人体研究。然而,在小动物模型中,生物发光成像现在常用于连续检测异种移植肿瘤的位置和负荷,或在过继转移后识别和测量免疫细胞或干细胞的数量。生物发光成像还能够随着时间推移追踪细菌、病毒和其他病原体的相对数量和位置。生物发光的专门应用还可追踪转基因小鼠中组织特异性荧光素酶的表达,并实时监测信号传导或蛋白质相互作用等生物学过程。总之,生物发光成像已成为生物医学研究的一个重要组成部分,并将在未来继续发挥作用。

相似文献

7
In Vivo Molecular Bioluminescence Imaging: New Tools and Applications.体内分子生物发光成像:新工具与新应用
Trends Biotechnol. 2017 Jul;35(7):640-652. doi: 10.1016/j.tibtech.2017.03.012. Epub 2017 May 10.

引用本文的文献

3
Establishment of a visualized mouse orthotopic xenograft model of nasopharyngeal carcinoma.建立可视化的鼻咽癌小鼠原位移植模型。
Cancer Biol Ther. 2024 Dec 31;25(1):2382531. doi: 10.1080/15384047.2024.2382531. Epub 2024 Aug 29.
6
Smart exosomes enhance PDAC targeted therapy.智能外泌体增强 PDAC 靶向治疗。
J Control Release. 2024 Apr;368:413-429. doi: 10.1016/j.jconrel.2024.02.037. Epub 2024 Mar 7.
7
Orthotopic Model of Hepatocellular Carcinoma in Mice.小鼠肝癌原位模型。
Methods Mol Biol. 2024;2769:1-13. doi: 10.1007/978-1-0716-3694-7_1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验