Schlegel Thomas, Schuster Stefan
Universität Erlangen-Nürnberg Institut für Zoologie II, Staudtstrasse 5, D-91058 Erlangen, Germany.
Science. 2008 Jan 4;319(5859):104-6. doi: 10.1126/science.1149265.
The enormous progress made in functional magnetic resonance imaging technology allows us to watch our brains engage in complex cognitive and social tasks. However, our understanding of what actually is computed in the underlying cellular networks is hindered by the vast numbers of neurons involved. Here, we describe a vertebrate system, shaped for top speed, in which a complex and plastic decision is performed by surprisingly small circuitry that can be studied at cellular resolution.
功能磁共振成像技术取得的巨大进展使我们能够观察大脑参与复杂认知和社交任务的过程。然而,由于涉及的神经元数量众多,我们对底层细胞网络中实际进行的计算的理解受到了阻碍。在这里,我们描述了一个为实现最高速度而构建的脊椎动物系统,在这个系统中,一个复杂且具有可塑性的决策是由令人惊讶的小电路执行的,而这个电路可以在细胞分辨率下进行研究。