Kounalakis Stylianos N, Keramidas Michail E, Nassis George P, Geladas Nickos D
Department of Sports Medicine and Biology of Exercise, Faculty of Physical Education and Sport Science, University of Athens, Ethnikis Antistassis 41, 17532 Daphne, Greece.
Eur J Appl Physiol. 2008 May;103(1):99-107. doi: 10.1007/s00421-007-0662-x. Epub 2008 Jan 5.
This study examined the role of muscle pump in the development of cardiovascular drift (CVdrift) during cycling. Twelve healthy males (23.4 +/- 0.5 years, mean +/- SE) exercised for 90 min with 40 and 80 pedal revolutions per minute (rpm) at the same oxygen consumption, in two separate days. CVdrift was developed in both conditions as indicated by the drop in stroke volume (SV) and the rise in heart rate (HR) from the 20th min onwards (Delta SV = -16.2 +/- 2.0 and -17.1 +/- 1.0 ml beat(-1); Delta HR = 18.3 +/- 2.0 and 17.5 +/- 3.0 beats min(-1) for 40 and 80 rpm, respectively, P < 0.05) but without difference between conditions. Mean cardiac output (CO2 rebreathing) was 14.7 +/- 0.3 l min(-1) and 15.0 +/- 0.3 l min(-1), and mean arterial pressure was 100.0 +/- 1.0 mmHg and 96.7 +/- 0.8 mmHg for 40 and 80 rpm, respectively, without significant changes over time, and without difference between conditions. Electromyographic activity (iEMG) was lower throughout exercise with 80 rpm (35.6 +/- 1.2% and 11.0 +/- 1.0% for 40 and 80 rpm, respectively). Similarly, total hemoglobin, determined with near-infrared spectroscopy (NIRS) was 58.0 +/- 0.8 (AU) for 40 rpm and 53.0 +/- 1.4 (arbitrary units) for 80 rpm, from 30th min onwards (P < 0.05), an indication of lower leg blood volume during the faster pedal rate condition. Thermal status (rectal and mean skin temperature), blood and plasma volume changes, blood lactate concentration, muscle oxygenation (NIRS signal) and the rate of perceived exertion were similar in the two trials. It seems that muscle pump is not an important factor for the development of CVdrift during cycling, at least under the present experimental conditions.
本研究探讨了肌肉泵在骑行过程中心血管漂移(CVdrift)发展中的作用。12名健康男性(23.4±0.5岁,平均值±标准误)在两天内,以相同的耗氧量,分别以每分钟40和80转(rpm)的速度进行了90分钟的运动。从第20分钟起,两种情况下均出现了CVdrift,表现为每搏输出量(SV)下降和心率(HR)上升(40 rpm和80 rpm时,ΔSV分别为-16.2±2.0和-17.±1.0 ml·次-1;ΔHR分别为18.3±2.0和17.5±3.0次·分钟-],P<0.05),但两种情况之间无差异。40 rpm和80 rpm时,平均心输出量(通过二氧化碳重呼吸法测定)分别为14.7±0.3 l·分钟-1和15.0±0.3 l·分钟-1,平均动脉压分别为100.0±1.0 mmHg和96.7±0.8 mmHg,随时间无显著变化,两种情况之间也无差异。在整个运动过程中,80 rpm时的肌电图活动(iEMG)较低(40 rpm和80 rpm时分别为35.6±1.2%和11.0±1.0%)。同样,从第30分钟起,通过近红外光谱(NIRS)测定的总血红蛋白,40 rpm时为58.0±0.8(任意单位),80 rpm时为53.0±1.4(任意单位)(P<0.05),这表明在较快蹬踏速度条件下小腿血容量较低。两次试验中的热状态(直肠温度和平均皮肤温度)、血液和血浆容量变化、血乳酸浓度、肌肉氧合(NIRS信号)以及主观用力程度相似。似乎在骑行过程中,至少在目前的实验条件下,肌肉泵不是CVdrift发展的重要因素。