Suppr超能文献

单分子时间序列中蛋白质构象波动的多尺度复杂网络

Multiscale complex network of protein conformational fluctuations in single-molecule time series.

作者信息

Li Chun-Biu, Yang Haw, Komatsuzaki Tamiki

机构信息

Nonlinear Sciences Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan.

出版信息

Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):536-41. doi: 10.1073/pnas.0707378105. Epub 2008 Jan 4.

Abstract

Conformational dynamics of proteins can be interpreted as itinerant motions as the protein traverses from one state to another on a complex network in conformational space or, more generally, in state space. Here we present a scheme to extract a multiscale state space network (SSN) from a single-molecule time series. Analysis by this method enables us to lift degeneracy--different physical states having the same value for a measured observable--as much as possible. A state or node in the network is defined not by the value of the observable at each time but by a set of subsequences of the observable over time. The length of the subsequence can tell us the extent to which the memory of the system is able to predict the next state. As an illustration, we investigate the conformational fluctuation dynamics probed by single-molecule electron transfer (ET), detected on a photon-by-photon basis. We show that the topographical features of the SSNs depend on the time scale of observation; the longer the time scale, the simpler the underlying SSN becomes, leading to a transition of the dynamics from anomalous diffusion to normal Brownian diffusion.

摘要

蛋白质的构象动力学可被解释为巡回运动,因为蛋白质在构象空间或更一般地在状态空间的复杂网络上从一种状态转变为另一种状态。在此,我们提出一种从单分子时间序列中提取多尺度状态空间网络(SSN)的方案。通过这种方法进行分析,能够使我们尽可能地消除简并性——即不同物理状态对于所测量的可观测量具有相同的值。网络中的一个状态或节点不是由每次的可观测量值来定义,而是由可观测量随时间的一组子序列来定义。子序列的长度能够告诉我们系统记忆预测下一状态的程度。作为示例,我们研究了通过单分子电子转移(ET)探测到的构象涨落动力学,该动力学是逐光子检测的。我们表明,SSN的拓扑特征取决于观测的时间尺度;时间尺度越长,潜在的SSN就变得越简单,从而导致动力学从反常扩散转变为正常布朗扩散。

相似文献

5
Peptide folding kinetics from replica exchange molecular dynamics.基于副本交换分子动力学的肽折叠动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):030902. doi: 10.1103/PhysRevE.77.030902. Epub 2008 Mar 24.
6
Perturbational formulation of principal component analysis in molecular dynamics simulation.分子动力学模拟中主成分分析的微扰公式化
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046702. doi: 10.1103/PhysRevE.78.046702. Epub 2008 Oct 7.
7
Proteins in a shear flow.剪切流中的蛋白质。
J Chem Phys. 2007 Oct 21;127(15):155106. doi: 10.1063/1.2795725.

引用本文的文献

1
An encompassed representation of timescale hierarchies in first-order reaction network.一级反应网络中时间尺度层次结构的综合表示。
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2317781121. doi: 10.1073/pnas.2317781121. Epub 2024 May 17.
3
Complex networks and deep learning for EEG signal analysis.用于脑电图信号分析的复杂网络与深度学习
Cogn Neurodyn. 2021 Jun;15(3):369-388. doi: 10.1007/s11571-020-09626-1. Epub 2020 Aug 29.
9
Energy landscape in protein folding and unfolding.蛋白质折叠与去折叠过程中的能量景观。
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3159-63. doi: 10.1073/pnas.1524864113. Epub 2016 Mar 8.

本文引用的文献

1
A topographic view of supercooled liquids and glass formation.过冷液体和玻璃形成的地形视图。
Science. 1995 Mar 31;267(5206):1935-9. doi: 10.1126/science.267.5206.1935.
3
Scaling theory of transport in complex biological networks.复杂生物网络中传输的标度理论。
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7746-51. doi: 10.1073/pnas.0700250104. Epub 2007 Apr 30.
4
Complex network analysis of free-energy landscapes.自由能景观的复杂网络分析。
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1817-22. doi: 10.1073/pnas.0608099104. Epub 2007 Jan 31.
8
Chain dynamics and power-law distance fluctuations of single-molecule systems.单分子系统的链动力学和幂律距离涨落
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):022102. doi: 10.1103/PhysRevE.73.022102. Epub 2006 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验