Suppr超能文献

枯草芽孢杆菌产生的脂肽丰原素对模型生物膜的影响。

Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes.

作者信息

Deleu Magali, Paquot Michel, Nylander Tommy

机构信息

Unité de Chimie biologique industrielle, Faculté universitaire des Sciences agronomiques de Gembloux, B-5030 Gembloux, Belgium.

出版信息

Biophys J. 2008 Apr 1;94(7):2667-79. doi: 10.1529/biophysj.107.114090. Epub 2008 Jan 4.

Abstract

Fengycin is a biologically active lipopeptide produced by several Bacillus subtilis strains. The lipopeptide is known to develop antifungal activity against filamentous fungi and to have hemolytic activity 40-fold lower than that of surfactin, another lipopeptide produced by B. subtilis. The aim of this work is to use complementary biophysical techniques to reveal the mechanism of membrane perturbation by fengycin. These include: 1), the Langmuir trough technique in combination with Brewster angle microscopy to study the lipopeptide penetration into monolayers; 2), ellipsometry to investigate the adsorption of fengycin onto supported lipid bilayers; 3), differential scanning calorimetry to determine the thermotropic properties of lipid bilayers in the presence of fengycin; and 4), cryogenic transmission electron microscopy, which provides information on the structural organization of the lipid/lipopeptide system. From these experiments, the mechanism of fengycin action appears to be based on a two-state transition controlled by the lipopeptide concentration. One state is the monomeric, not deeply anchored and nonperturbing lipopeptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity. The mechanism, thus, appears to be driven mainly by the physicochemical properties of the lipopeptide, i.e., its amphiphilic character and affinity for lipid bilayers.

摘要

丰原素是由几种枯草芽孢杆菌菌株产生的一种具有生物活性的脂肽。已知这种脂肽对丝状真菌具有抗真菌活性,并且其溶血活性比枯草芽孢杆菌产生的另一种脂肽表面活性素低40倍。这项工作的目的是使用互补的生物物理技术来揭示丰原素对膜扰动的机制。这些技术包括:1),结合布鲁斯特角显微镜的朗缪尔槽技术,用于研究脂肽渗透到单层膜中的情况;2),椭偏仪,用于研究丰原素在支持的脂质双层上的吸附;3),差示扫描量热法,用于确定在存在丰原素的情况下脂质双层的热致性质;4),低温透射电子显微镜,它提供有关脂质/脂肽系统结构组织的信息。从这些实验中,丰原素的作用机制似乎基于由脂肽浓度控制的双态转变。一种状态是单体形式,未深度锚定且无扰动的脂肽,另一种状态是埋藏的聚集形式,它负责膜泄漏和生物活性。因此,该机制似乎主要由脂肽的物理化学性质驱动,即其两亲性特征和对脂质双层的亲和力。

相似文献

1
Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes.
Biophys J. 2008 Apr 1;94(7):2667-79. doi: 10.1529/biophysj.107.114090. Epub 2008 Jan 4.
3
Leakage and lysis of lipid membranes induced by the lipopeptide surfactin.
Eur Biophys J. 2007 Apr;36(4-5):305-14. doi: 10.1007/s00249-006-0091-5. Epub 2006 Oct 19.
4
Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes.
Colloids Surf B Biointerfaces. 2017 Aug 1;156:114-122. doi: 10.1016/j.colsurfb.2017.05.021. Epub 2017 May 10.
5
Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3.
J Antibiot (Tokyo). 1986 Jul;39(7):888-901. doi: 10.7164/antibiotics.39.888.
6
Role of Lipid Composition in the Interaction and Activity of the Antimicrobial Compound Fengycin with Complex Membrane Models.
J Membr Biol. 2019 Dec;252(6):627-638. doi: 10.1007/s00232-019-00100-6. Epub 2019 Oct 14.
7
Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis.
Arch Microbiol. 2018 Jul;200(5):783-791. doi: 10.1007/s00203-018-1483-5. Epub 2018 Feb 8.
9
Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
Microbiol Res. 2017 Jun;199:89-97. doi: 10.1016/j.micres.2017.03.004. Epub 2017 Mar 21.
10
Domain redistribution within ergosterol-containing model membranes in the presence of the antimicrobial compound fengycin.
Biochim Biophys Acta Biomembr. 2019 Apr 1;1861(4):738-747. doi: 10.1016/j.bbamem.2019.01.003. Epub 2019 Jan 10.

引用本文的文献

3
Bioinformatic strategies in metagenomics of chronic prostatitis.
World J Urol. 2025 Mar 26;43(1):188. doi: 10.1007/s00345-025-05514-7.
5
Draft genome of CMRP6330, a suitable biocontrol agent for disease management in crops.
Microbiol Resour Announc. 2024 Dec 12;13(12):e0065724. doi: 10.1128/mra.00657-24. Epub 2024 Nov 6.
6
Bacillus endophytic strains control Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici in tomato cv. Perinha.
Braz J Microbiol. 2024 Dec;55(4):4019-4034. doi: 10.1007/s42770-024-01539-z. Epub 2024 Oct 22.
8
Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds.
Pest Manag Sci. 2025 Jan;81(1):298-307. doi: 10.1002/ps.8433. Epub 2024 Sep 26.

本文引用的文献

2
Structure of mixed micelles formed in PEG-lipid/lipid dispersions.
Langmuir. 2007 Apr 10;23(8):4192-8. doi: 10.1021/la063501s. Epub 2007 Mar 8.
3
Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
Chem Phys Lipids. 2006 Jun;141(1-2):179-84. doi: 10.1016/j.chemphyslip.2006.02.011. Epub 2006 Mar 20.
4
Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers.
Biophys J. 2006 Mar 15;90(6):2086-92. doi: 10.1529/biophysj.105.075150. Epub 2005 Dec 30.
5
Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films.
Biochim Biophys Acta. 2005 Jul 30;1713(2):118-28. doi: 10.1016/j.bbamem.2005.06.002.
6
Composition of supported model membranes determined by neutron reflection.
Langmuir. 2005 Mar 29;21(7):2827-37. doi: 10.1021/la047389e.
8
Interfacial dynamics and structure of surfactant layers.
Adv Colloid Interface Sci. 2005 Mar 17;113(1):21-42. doi: 10.1016/j.cis.2005.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验