Zughaier Susu M, Lindner Buko, Howe Jörg, Garidel Patrick, Koch Michel H J, Brandenburg Klaus, Stephens David S
Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.
J Endotoxin Res. 2007;13(6):343-57. doi: 10.1177/0968051907084435.
Meningococcal endotoxin is the major contributor to the pathogenesis of fulminant sepsis and meningitis of meningococcal disease and is a potent activator of the MyD88-dependent and MyD88-independent pathways via the MD-2/TLR4 receptor. To understand better the biological properties of meningococcal endotoxin that initiates these events, the physicochemical structure of Neisseria meningitidis lipopoly(oligo)saccharide (LOS) of the serogroup B wild-type strain NMB (NeuNAc-Gal beta-GlcNAc-Gal beta-Glc beta-Hep2(GlcNAc,Glc alpha)PEA-Kdo2-lipid A, 1,4'-bisphosphorylated +/- PEA, PEtN) and the genetically-defined mutants (gmhB, Kdo2 -lipid A; kdtA, meningococcal lipid A; gmhB-lpxL1, Kdo2penta-acylated lipid A and NMB-lpx1, penta-acylated meningococcal LOS) were assessed in relation to bioactivity. Confirming previous work, Kdo2lipid A was the minimal structure required for optimal activation of the MD-2/TLR4 pathway of human macrophages. Meningococcal lipid A alone was a very weak agonist in stimulating human macrophages, even at high doses. Penta-acylated LOS structures demonstrated a moderate reduction in TLR4/MyD88-dependent signaling and a dramatic decrease in TLR4-TRIF-dependent signaling. For a better understanding of these results, we have performed an analysis of physicochemical parameters of the LOS structures such as the gel-to-liquid crystalline phase transition of the acyl chains, the inclination angle of the diglucosamine backbone with respect to the membrane surface, and the aggregate structure, and have found a very significant correlation of these parameters with biological activities extending our concept of endotoxicity.
脑膜炎球菌内毒素是暴发性败血症和脑膜炎球菌病脑膜炎发病机制的主要促成因素,并且是通过MD-2/TLR4受体激活MyD88依赖性和MyD88非依赖性途径的强效激活剂。为了更好地理解引发这些事件的脑膜炎球菌内毒素的生物学特性,对B群野生型菌株NMB(NeuNAc-Galβ-GlcNAc-Galβ-Glcβ-Hep2(GlcNAc,Glcα)PEA-Kdo2-脂多糖A,1,4'-双磷酸化+/-PEA,PEtN)以及基因定义的突变体(gmhB,Kdo2-脂多糖A;kdtA,脑膜炎球菌脂多糖A;gmhB-lpxL1,Kdo2五酰化脂多糖A和NMB-lpx1,五酰化脑膜炎球菌脂寡糖)的物理化学结构进行了生物活性评估。证实先前的研究工作,Kdo2脂多糖A是人类巨噬细胞MD-2/TLR4途径最佳激活所需的最小结构。单独的脑膜炎球菌脂多糖A即使在高剂量下也是刺激人类巨噬细胞的非常弱的激动剂。五酰化脂寡糖结构显示TLR4/MyD88依赖性信号传导适度降低,而TLR4-TRIF依赖性信号传导显著降低。为了更好地理解这些结果,我们对脂寡糖结构的物理化学参数进行了分析,例如酰基链的凝胶-液晶相转变、二葡糖胺主链相对于膜表面的倾斜角度以及聚集体结构,并发现这些参数与生物活性具有非常显著的相关性,扩展了我们对内毒素毒性的概念。