Graham Andrea L
Institute of Evolution, School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Edinburgh EH9 3JT, Scotland.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):566-70. doi: 10.1073/pnas.0707221105. Epub 2008 Jan 8.
Coinfection of a host by multiple parasite species has important epidemiological and clinical implications. However, the direction and magnitude of effects vary considerably among systems, and, until now, there has been no general framework within which to explain this variation. Community ecology has great potential for application to such problems in biomedicine. Here, metaanalysis of data from 54 experiments on laboratory mice reveals that basic ecological rules govern the outcome of coinfection across a broad spectrum of parasite taxa. Specifically, resource-based ("bottom-up") and predator-based ("top-down") control mechanisms combined to determine microparasite population size in helminth-coinfected hosts. Coinfection imposed bottom-up control (resulting in decreased microparasite density) when a helminth that causes anemia was paired with a microparasite species that requires host red blood cells. At the same time, coinfection impaired top-down control of microparasites by the immune system: the greater the helminth-induced suppression of the inflammatory cytokine interferon (IFN)-gamma, the greater the increase in microparasite density. These results suggest that microparasite population growth will be most explosive when underlying helminths do not impose resource limitations but do strongly modulate IFN-gamma responses. Surprisingly simple rules and an ecological framework within which to analyze biomedical data thus emerge from analysis of this dataset. Through such an interdisciplinary lens, predicting the outcome of coinfection may become tractable.
宿主被多种寄生虫物种同时感染具有重要的流行病学和临床意义。然而,不同系统中影响的方向和程度差异很大,而且到目前为止,还没有一个通用的框架来解释这种差异。群落生态学在应用于生物医学中的此类问题方面具有巨大潜力。在这里,对54项关于实验室小鼠的实验数据进行的荟萃分析表明,基本的生态规则支配着广泛的寄生虫类群中同时感染的结果。具体而言,基于资源的(“自下而上”)和基于捕食者的(“自上而下”)控制机制共同决定了蠕虫共感染宿主中微寄生虫的种群大小。当导致贫血的蠕虫与需要宿主红细胞的微寄生虫物种配对时,同时感染施加了自下而上的控制(导致微寄生虫密度降低)。与此同时,同时感染削弱了免疫系统对微寄生虫的自上而下控制:蠕虫诱导的炎症细胞因子干扰素(IFN)-γ抑制作用越强,微寄生虫密度增加就越大。这些结果表明,当潜在的蠕虫不施加资源限制但强烈调节IFN-γ反应时,微寄生虫种群增长将最具爆炸性。因此,通过对该数据集的分析,出现了令人惊讶的简单规则和一个用于分析生物医学数据的生态框架。通过这样一个跨学科的视角,预测同时感染的结果可能变得易于处理。