Suppr超能文献

听觉中脑的动态频谱时间特征选择性

Dynamic spectrotemporal feature selectivity in the auditory midbrain.

作者信息

Lesica Nicholas A, Grothe Benedikt

机构信息

Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany.

出版信息

J Neurosci. 2008 May 21;28(21):5412-21. doi: 10.1523/JNEUROSCI.0073-08.2008.

Abstract

The transformation of auditory information from the cochlea to the cortex is a highly nonlinear process. Studies using tone stimuli have revealed that changes in even the most basic parameters of the auditory stimulus can alter neural response properties; for example, a change in stimulus intensity can cause a shift in a neuron's preferred frequency. However, it is not yet clear how such nonlinearities contribute to the processing of spectrotemporal features in complex sounds. Here, we use spectrotemporal receptive fields (STRFs) to characterize the effects of stimulus intensity on feature selectivity in the mammalian inferior colliculus (IC). At low intensities, we find that STRFs are relatively simple, typically consisting of a single excitatory region, indicating that the neural response is simply a reflection of the stimulus amplitude at the preferred frequency. In contrast, we find that STRFs at high intensities typically consist of a combination of an excitatory region and one or more inhibitory regions, often in a spectrotemporally inseparable arrangement, indicating selectivity for complex auditory features. We show that a linear-nonlinear model with the appropriate STRF can predict neural responses to stimuli with a fixed intensity, and we demonstrate that a simple extension of the model with an intensity-dependent STRF can predict responses to stimuli with varying intensity. These results illustrate the complexity of auditory feature selectivity in the IC, but also provide encouraging evidence that the prediction of nonlinear responses to complex stimuli is a tractable problem.

摘要

听觉信息从耳蜗到皮层的转换是一个高度非线性的过程。使用纯音刺激的研究表明,即使是听觉刺激最基本参数的变化也能改变神经反应特性;例如,刺激强度的变化会导致神经元偏好频率的偏移。然而,目前尚不清楚这种非线性如何影响复杂声音中频谱时间特征的处理。在这里,我们使用频谱时间感受野(STRF)来表征刺激强度对哺乳动物下丘(IC)中特征选择性的影响。在低强度下,我们发现STRF相对简单,通常由单个兴奋性区域组成,这表明神经反应仅仅是偏好频率处刺激幅度的反映。相比之下,我们发现在高强度下,STRF通常由一个兴奋性区域和一个或多个抑制性区域组成,它们在频谱时间上往往不可分离,这表明对复杂听觉特征具有选择性。我们表明,具有适当STRF的线性 - 非线性模型可以预测对固定强度刺激的神经反应,并且我们证明,通过强度依赖的STRF对模型进行简单扩展可以预测对强度变化刺激的反应。这些结果说明了IC中听觉特征选择性的复杂性,但也提供了令人鼓舞的证据,即对复杂刺激的非线性反应预测是一个可处理的问题。

相似文献

1
Dynamic spectrotemporal feature selectivity in the auditory midbrain.
J Neurosci. 2008 May 21;28(21):5412-21. doi: 10.1523/JNEUROSCI.0073-08.2008.
2
Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.
J Neurosci. 2002 May 15;22(10):4114-31. doi: 10.1523/JNEUROSCI.22-10-04114.2002.
3
The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
J Neurosci. 2008 Jan 9;28(2):446-55. doi: 10.1523/JNEUROSCI.1775-07.2007.
4
Spectrotemporal response properties of inferior colliculus neurons in alert monkey.
J Neurosci. 2009 Aug 5;29(31):9725-39. doi: 10.1523/JNEUROSCI.5459-08.2009.
5
Spectrotemporal contrast kernels for neurons in primary auditory cortex.
J Neurosci. 2012 Aug 15;32(33):11271-84. doi: 10.1523/JNEUROSCI.1715-12.2012.
8
Linearity of cortical receptive fields measured with natural sounds.
J Neurosci. 2004 Feb 4;24(5):1089-100. doi: 10.1523/JNEUROSCI.4445-03.2004.
9
Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
J Neurosci. 2016 Jan 13;36(2):280-9. doi: 10.1523/JNEUROSCI.2441-15.2016.

引用本文的文献

1
A midbrain circuit mechanism for noise-induced negative valence coding.
Nat Commun. 2025 May 17;16(1):4610. doi: 10.1038/s41467-025-59956-z.
2
Mechanisms of Tone-in-Noise Encoding in the Inferior Colliculus.
J Neurosci. 2025 Jun 4;45(23):e1907242025. doi: 10.1523/JNEUROSCI.1907-24.2025.
3
Regularizing hyperparameters of interacting neural signals in the mouse cortex reflect states of arousal.
PLoS Comput Biol. 2024 Oct 15;20(10):e1012478. doi: 10.1371/journal.pcbi.1012478. eCollection 2024 Oct.
4
A quantitative description of macaque ganglion cell responses to natural scenes: the interplay of time and space.
J Physiol. 2021 Jun;599(12):3169-3193. doi: 10.1113/JP281200. Epub 2021 Jun 1.
5
Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
J Neurosci. 2020 Mar 4;40(10):2080-2093. doi: 10.1523/JNEUROSCI.2337-19.2020. Epub 2020 Jan 29.
6
Integration of locomotion and auditory signals in the mouse inferior colliculus.
Elife. 2020 Jan 28;9:e52228. doi: 10.7554/eLife.52228.
7
Spectral tuning of adaptation supports coding of sensory context in auditory cortex.
PLoS Comput Biol. 2019 Oct 18;15(10):e1007430. doi: 10.1371/journal.pcbi.1007430. eCollection 2019 Oct.
9
A Temporal Filter for Binaural Hearing Is Dynamically Adjusted by Sound Pressure Level.
Front Neural Circuits. 2019 Feb 13;13:8. doi: 10.3389/fncir.2019.00008. eCollection 2019.
10
A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex.
PLoS Comput Biol. 2019 Feb 11;15(2):e1006766. doi: 10.1371/journal.pcbi.1006766. eCollection 2019 Feb.

本文引用的文献

1
Efficient temporal processing of naturalistic sounds.
PLoS One. 2008 Feb 27;3(2):e1655. doi: 10.1371/journal.pone.0001655.
3
The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
J Neurosci. 2008 Jan 9;28(2):446-55. doi: 10.1523/JNEUROSCI.1775-07.2007.
4
Responses to social vocalizations in the inferior colliculus of the mustached bat are influenced by secondary tuning curves.
J Neurophysiol. 2007 Dec;98(6):3461-72. doi: 10.1152/jn.00638.2007. Epub 2007 Oct 10.
6
Receptive field for dorsal cochlear nucleus neurons at multiple sound levels.
J Neurophysiol. 2007 Dec;98(6):3505-15. doi: 10.1152/jn.00539.2007. Epub 2007 Sep 26.
7
Rethinking tuning: in vivo whole-cell recordings of the inferior colliculus in awake bats.
J Neurosci. 2007 Aug 29;27(35):9469-81. doi: 10.1523/JNEUROSCI.2865-07.2007.
9
Temporal processing and adaptation in the songbird auditory forebrain.
Neuron. 2006 Sep 21;51(6):845-59. doi: 10.1016/j.neuron.2006.08.030.
10
Spike-triggered neural characterization.
J Vis. 2006 Jul 17;6(4):484-507. doi: 10.1167/6.4.13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验