Suppr超能文献

用于放射治疗计划的基于活动轮廓的并发多模态图像分割

Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning.

作者信息

El Naqa Issam, Yang Deshan, Apte Aditya, Khullar Divya, Mutic Sasa, Zheng Jie, Bradley Jeffrey D, Grigsby Perry, Deasy Joseph O

机构信息

Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, Missouri 63110, USA.

出版信息

Med Phys. 2007 Dec;34(12):4738-49. doi: 10.1118/1.2799886.

Abstract

Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90 +/- 0.02 (p < 0.0001) with an estimated target volume error of 1.28 +/- 1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

摘要

多模态成像信息目前在癌症患者的放射治疗计划中经常被使用。作者们正在研究利用所有可用成像信息进行联合靶区配准和分割的方法,包括多模态图像或来自同一模态的多个图像集。特别是,作者们基于多值水平集可变形模型开发了变分方法,用于对由配准后的PET、CT或MR数据集组合而成的多模态图像进行同步二维或三维分割。整合这些组合信息以定义整体生物物理结构体积。作者们在三个患者数据集上展示了这些方法,包括一个非小细胞肺癌的PET/CT病例、一个宫颈癌的PET/CT病例以及一个前列腺癌患者的CT和MRI病例。CT、PET和MR体模数据也用于对所提出的多模态分割方法进行定量验证。相应的骰子相似系数(DSC)为0.90±0.02(p<0.0001),估计靶区体积误差为1.28±1.23%体积。初步结果表明,并发多模态分割方法可为组合来自不同模态的成像数据提供一个可行且准确的框架,并且是放射治疗计划中描绘生物物理结构体积的潜在有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验