Suppr超能文献

人工智能在 PET/CT 中的疗效评估中的应用。

Artificial Intelligence for Response Evaluation With PET/CT.

机构信息

Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI.

Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI.

出版信息

Semin Nucl Med. 2021 Mar;51(2):157-169. doi: 10.1053/j.semnuclmed.2020.10.003. Epub 2020 Nov 11.

Abstract

Positron emission tomography (PET)/computed tomography (CT) are nuclear diagnostic imaging modalities that are routinely deployed for cancer staging and monitoring. They hold the advantage of detecting disease related biochemical and physiologic abnormalities in advance of anatomical changes, thus widely used for staging of disease progression, identification of the treatment gross tumor volume, monitoring of disease, as well as prediction of outcomes and personalization of treatment regimens. Among the arsenal of different functional imaging modalities, nuclear imaging has benefited from early adoption of quantitative image analysis starting from simple standard uptake value normalization to more advanced extraction of complex imaging uptake patterns; thanks to application of sophisticated image processing and machine learning algorithms. In this review, we discuss the application of image processing and machine/deep learning techniques to PET/CT imaging with special focus on the oncological radiotherapy domain as a case study and draw examples from our work and others to highlight current status and future potentials.

摘要

正电子发射断层扫描(PET)/计算机断层扫描(CT)是核医学诊断成像方式,常用于癌症分期和监测。它们具有在解剖结构变化之前提前检测与疾病相关的生化和生理异常的优势,因此广泛用于疾病进展分期、确定治疗大体肿瘤体积、监测疾病以及预测结果和制定治疗方案的个体化。在不同的功能成像方式中,核医学得益于从简单的标准摄取值归一化到更先进的复杂成像摄取模式的提取等定量图像分析的早期采用;这要归功于复杂的图像处理和机器学习算法的应用。在这篇综述中,我们讨论了图像处理和机器/深度学习技术在 PET/CT 成像中的应用,特别关注肿瘤放射治疗领域,并以我们的工作和其他工作为例,强调了当前的状况和未来的潜力。

相似文献

1
Artificial Intelligence for Response Evaluation With PET/CT.人工智能在 PET/CT 中的疗效评估中的应用。
Semin Nucl Med. 2021 Mar;51(2):157-169. doi: 10.1053/j.semnuclmed.2020.10.003. Epub 2020 Nov 11.
9
Deep learning for whole-body medical image generation.深度学习在全身医学图像生成中的应用。
Eur J Nucl Med Mol Imaging. 2021 Nov;48(12):3817-3826. doi: 10.1007/s00259-021-05413-0. Epub 2021 May 22.
10
Positron emission tomography/computed tomography.正电子发射断层扫描/计算机断层扫描
Semin Nucl Med. 2008 May;38(3):152-66. doi: 10.1053/j.semnuclmed.2008.01.003.

引用本文的文献

本文引用的文献

2
Deep Learning for Variational Multimodality Tumor Segmentation in PET/CT.用于PET/CT中变分多模态肿瘤分割的深度学习
Neurocomputing (Amst). 2020 Jun 7;392:277-295. doi: 10.1016/j.neucom.2018.10.099. Epub 2019 Apr 24.
6
Machine learning for radiomics-based multimodality and multiparametric modeling.基于影像组学的多模态和多参数建模的机器学习
Q J Nucl Med Mol Imaging. 2019 Dec;63(4):323-338. doi: 10.23736/S1824-4785.19.03213-8. Epub 2019 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验