Chen Wen-Chi, Lai Chien-Chen, Tsai Yuhsin, Lin Wei-Yong, Tsai Fuu-Jen
Department of Urology, China Medical University Hospital, Taichung, Taiwan.
J Clin Lab Anal. 2008;22(1):77-85. doi: 10.1002/jcla.20214.
It is believed that boundary compositions of matrix proteins might play a role in stone formation; however, few proteomic studies concerning matrix proteins in urinary stones have been conducted. In this study, we extracted low molecular weight proteins from calcium oxalate stones and measured their characteristic patterns by mass spectroscopy. A total of 10 stones were surgically removed from patients with urolithiasis. Proteins were extracted from the stones and identified by one-dimensional electrophoresis (sodium dodecyl sulfate buffer [SDS]-polyacrylamide gel electrophoresis [SDS-PAGE]). After in-gel digest, samples were analyzed by the surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technique. The peptide sequences were analyzed from the data of mass spectroscopy. Proteins were identified from Database Search (SwissProt Protein Database; Swiss Institute of Bioinformatics; http://www.expasy.org/sprot) on a MASCOT server (Matrix Science Ltd.; http://www.matrixscience.com). A total of three bands of proteins (27, 18, and 14 kDa) were identified from SDS-PAGE in each stone sample. A database search (SwissProt) on a MASCOT server revealed that the most frequently seen proteins from band 1 (27 kDa) were leukocyte elastase precursor, cathepsin G precursor, azurocidin precursor, and myeloblastin precursor (EC 3.4.21.76) (leukocyte proteinase 3); band 2 (18 kDa) comprised calgranulin B, eosinophil cationic protein precursor, and lysozyme C precursor; band 3 (14 kDa) showed neutrophil defensin 3 precursor, calgranulin A, calgranulin C, and histone H4. The modifications and deamidations found from the mass pattern of these proteins may provide information for the study of matrix proteins. Various lower molecular weight proteins can be extracted from calcium oxalate stones. The characteristic patterns and their functions of those proteins should be further tested to investigate their roles in stone formation.
据信,基质蛋白的边界组成可能在结石形成中起作用;然而,关于尿结石中基质蛋白的蛋白质组学研究却很少。在本研究中,我们从草酸钙结石中提取低分子量蛋白质,并通过质谱测量其特征图谱。共从尿路结石患者中手术取出10块结石。从结石中提取蛋白质,并通过一维电泳(十二烷基硫酸钠缓冲液[SDS]-聚丙烯酰胺凝胶电泳[SDS-PAGE])进行鉴定。凝胶内消化后,通过表面增强激光解吸电离飞行时间(SELDI-TOF)技术对样品进行分析。从质谱数据中分析肽序列。在MASCOT服务器(Matrix Science Ltd.;http://www.matrixscience.com)上通过数据库搜索(SwissProt蛋白质数据库;瑞士生物信息学研究所;http://www.expasy.org/sprot)鉴定蛋白质。在每个结石样品的SDS-PAGE中总共鉴定出三条蛋白质条带(27、18和14 kDa)。在MASCOT服务器上进行的数据库搜索(SwissProt)显示,来自条带1(27 kDa)最常见的蛋白质是白细胞弹性蛋白酶前体、组织蛋白酶G前体、天青杀素前体和成髓细胞素前体(EC 3.4.21.76)(白细胞蛋白酶3);条带2(18 kDa)包括钙粒蛋白B、嗜酸性粒细胞阳离子蛋白前体和溶菌酶C前体;条带3(14 kDa)显示中性粒细胞防御素3前体、钙粒蛋白A、钙粒蛋白C和组蛋白H4。从这些蛋白质的质谱图谱中发现的修饰和脱酰胺作用可能为基质蛋白的研究提供信息。可以从草酸钙结石中提取各种低分子量蛋白质。这些蛋白质的特征图谱及其功能应进一步测试,以研究它们在结石形成中的作用。