Zhang Xue-Xian, Rainey Paul B
Institute of Molecular Biosciences, Massey University, Auckland, New Zealand.
Genetics. 2008 Jan;178(1):185-95. doi: 10.1534/genetics.107.081984.
Pseudomonas fluorescens SBW25 is capable of growing on histidine as a sole source of carbon and/or nitrogen. Previous work showed that the two-component regulatory system CbrAB is required for expression of the histidine utilization (hut) locus when histidine is the sole source of carbon and nitrogen. Here, using mutational analysis and transcriptional assays, we demonstrate involvement of a second two-component system, NtrBC. When histidine is the sole carbon source, transcription of the hutU operon is initiated from a sigma54-type promoter and requires CbrB (an enhancer binding protein for sigma54-recruitment). However, when histidine is the sole nitrogen source, the hutU operon is transcribed from a sigma70-type promoter and requires either CbrB or the nitrogen regulator, NtrC. No role was found for the SBW25 homolog of the nitrogen assimilation control protein (NAC). Biolog phenotypic microarray analysis of the ability of the three mutants (DeltacbrB, DeltantrC, and DeltacbrB DeltantrC) to utilize 190 carbon and 95 nitrogen substrates confirmed the central regulatory roles of CbrAB and NtrBC in cellular carbon and nitrogen catabolism: deletion of cbrB abolished growth on 20 carbon substrates; deletion of ntrC eliminated growth on 28 nitrogen substrates. A double cbrB-ntrC mutant was unable to utilize a further 14 nitrogen substrates (including histidine, proline, leucine, isoleucine, and valine). Our data show that CbrAB plays a role in regulation of both carbon and nitrogen catabolism and maintains activity of catabolic pathways under different C:N ratios.
荧光假单胞菌SBW25能够以组氨酸作为唯一的碳源和/或氮源生长。先前的研究表明,当组氨酸是唯一的碳源和氮源时,两组分调节系统CbrAB是组氨酸利用(hut)基因座表达所必需的。在此,我们通过突变分析和转录分析证明了另一个两组分系统NtrBC也参与其中。当组氨酸是唯一碳源时,hutU操纵子的转录从一个σ54型启动子起始,并且需要CbrB(一种用于招募σ54的增强子结合蛋白)。然而,当组氨酸是唯一氮源时,hutU操纵子从一个σ70型启动子转录,并且需要CbrB或氮调节因子NtrC。未发现氮同化控制蛋白(NAC)的SBW25同源物有作用。对三个突变体(ΔcbrB、ΔntrC和ΔcbrB ΔntrC)利用190种碳底物和95种氮底物能力的Biolog表型微阵列分析证实了CbrAB和NtrBC在细胞碳和氮分解代谢中的核心调节作用:cbrB缺失消除了在20种碳底物上的生长;ntrC缺失消除了在28种氮底物上的生长。cbrB-ntrC双突变体无法利用另外14种氮底物(包括组氨酸、脯氨酸、亮氨酸、异亮氨酸和缬氨酸)。我们的数据表明,CbrAB在碳和氮分解代谢的调节中均发挥作用,并在不同的碳氮比下维持分解代谢途径的活性。