Suppr超能文献

人类对以不同刺激速率呈现的声音所产生的诱发脑电位的成熟过程。

The maturation of human evoked brain potentials to sounds presented at different stimulus rates.

作者信息

Sussman E, Steinschneider M, Gumenyuk V, Grushko J, Lawson K

机构信息

Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.

出版信息

Hear Res. 2008 Feb;236(1-2):61-79. doi: 10.1016/j.heares.2007.12.001. Epub 2007 Dec 15.

Abstract

The current study assessed the normal development of cortical auditory evoked potentials (CAEPs) in humans presented with pure tone stimuli at relatively fast stimulus rates. Traditionally, maturation of sound processing indexed by CAEPs has been studied in paradigms using inter-stimulus intervals (ISIs) generally slower than 1 Hz. While long ISIs may enhance the amplitude of CAEP components, speech information generally occurs at more rapid rates. These slower rates of sound presentation may not accurately assess auditory cortical functions in more realistic sound environments. We examined the effect of temporal rate on the elicitation of the P1-N1-P2-N2 components to unattended sounds at four levels of stimulus onset asynchrony (SOA, onset to onset, 200, 400, 600, and 800 ms) in children grouped separately by year (ages 8, 9, 10, 11 years), in adolescents (age 16 years) and in one group of young adults (ages 22-40 years). We found that both age and stimulus rate produced profound changes in CAEP morphology. Between the ages of 8-11 years, the P1 and N2 components dominated the ERP waveform at all stimulus rates. N1, the dominant CAEP component in adults, appeared as a bifurcation in a broad positive peak at earlier ages, and did not emerge as a separate component until adolescence. While the P1-N1-P2 components are more "adult-like" than "child-like" in the adolescent subjects, the N2 component, a hallmark of the child obligatory response, was still present. Faster rates resulted in the suppression of discrete components such that by 200 ms, only P1 in the adults and adolescents, and both P1 and N2 in the youngest children were discernable. We conclude that both age and ISI are important variables in the assessment of auditory cortex function and maturation. The presence of N2 in adolescents indicates that auditory cortical maturation persists into teen years.

摘要

本研究评估了在相对快速的刺激速率下,给予纯音刺激的人类皮质听觉诱发电位(CAEPs)的正常发育情况。传统上,以CAEPs为指标的声音处理成熟度是在刺激间隔(ISIs)通常慢于1Hz的范式中进行研究的。虽然长ISIs可能会增强CAEP成分的幅度,但语音信息通常以更快的速率出现。这些较慢的声音呈现速率可能无法在更现实的声音环境中准确评估听觉皮层功能。我们研究了时间速率对不同年龄组(8、9、10、11岁儿童、16岁青少年和一组22 - 40岁的年轻成年人)在四个刺激起始异步水平(SOA,起始到起始,200、400、600和800毫秒)下对未注意声音诱发的P1 - N1 - P2 - N2成分的影响。我们发现年龄和刺激速率都会使CAEP形态发生显著变化。在8 - 11岁之间,P1和N2成分在所有刺激速率下主导ERP波形。N1是成年人中主导的CAEP成分,在较早年龄时表现为一个宽正峰中的分叉,直到青春期才作为一个单独的成分出现。虽然在青少年受试者中,P1 - N1 - P2成分比儿童更“像成人”,但儿童强制性反应的标志N2成分仍然存在。更快的速率导致离散成分受到抑制,以至于到200毫秒时,只有成年人和青少年中的P1以及最年幼儿童中的P1和N2是可辨别的。我们得出结论,年龄和ISI都是评估听觉皮层功能和成熟度的重要变量。青少年中N2的存在表明听觉皮层成熟持续到青少年时期。

相似文献

1
The maturation of human evoked brain potentials to sounds presented at different stimulus rates.
Hear Res. 2008 Feb;236(1-2):61-79. doi: 10.1016/j.heares.2007.12.001. Epub 2007 Dec 15.
2
Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.
Int J Pediatr Otorhinolaryngol. 2013 Jul;77(7):1162-73. doi: 10.1016/j.ijporl.2013.04.030. Epub 2013 May 27.
3
Maturation of cortical sound processing as indexed by event-related potentials.
Clin Neurophysiol. 2002 Jun;113(6):870-82. doi: 10.1016/s1388-2457(02)00078-0.
4
Maturation of the cortical auditory evoked potential in infants and young children.
Hear Res. 2006 Feb;212(1-2):185-202. doi: 10.1016/j.heares.2005.11.010. Epub 2006 Feb 3.
5
Abnormalities in central auditory maturation in children with language-based learning problems.
Clin Neurophysiol. 2006 Sep;117(9):1949-56. doi: 10.1016/j.clinph.2006.05.015. Epub 2006 Jul 18.
6
Maturation of CAEP in infants and children: a review.
Hear Res. 2006 Feb;212(1-2):212-23. doi: 10.1016/j.heares.2005.11.008. Epub 2006 Feb 9.
7
Developmental changes in refractoriness of the cortical auditory evoked potential.
Clin Neurophysiol. 2005 Mar;116(3):648-57. doi: 10.1016/j.clinph.2004.09.009.
8
Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges.
Clin Neurophysiol. 2014 Apr;125(4):814-826. doi: 10.1016/j.clinph.2013.09.031. Epub 2013 Oct 24.

引用本文的文献

1
Leveraging meaning-induced neural dynamics to detect covert cognition via EEG during natural language listening-a case series.
Front Psychol. 2025 Jul 8;16:1616963. doi: 10.3389/fpsyg.2025.1616963. eCollection 2025.
2
Assessing Speech Audibility via Syllabic-Rate Neural Responses in Adults and Children With and Without Hearing Loss.
Trends Hear. 2024 Jan-Dec;28:23312165241227815. doi: 10.1177/23312165241227815.
3
Effect of presentation rate on auditory processing in Rett syndrome: event-related potential study.
Mol Autism. 2023 Oct 26;14(1):40. doi: 10.1186/s13229-023-00566-1.
4
Divergent auditory activation in relation to inhibition task performance in children and adults.
Hum Brain Mapp. 2023 Oct 15;44(15):4972-4985. doi: 10.1002/hbm.26418. Epub 2023 Jul 26.
9
Electrophysiological Examination of Ambient Speech Processing in Children With Cochlear Implants.
J Speech Lang Hear Res. 2022 Sep 12;65(9):3502-3517. doi: 10.1044/2022_JSLHR-22-00004. Epub 2022 Aug 29.
10
Simultaneous subcortical and cortical electrophysiological recordings of spectro-temporal processing in humans.
Front Neurol. 2022 Aug 3;13:928158. doi: 10.3389/fneur.2022.928158. eCollection 2022.

本文引用的文献

1
Evidence of a tonotopic organization of the auditory cortex in cochlear implant users.
J Neurosci. 2007 Jul 18;27(29):7838-46. doi: 10.1523/JNEUROSCI.0154-07.2007.
2
Neurophysiological indices of attention to speech in children with specific language impairment.
Clin Neurophysiol. 2007 Jun;118(6):1230-43. doi: 10.1016/j.clinph.2007.02.023. Epub 2007 Apr 23.
3
Age-related changes in transient and oscillatory brain responses to auditory stimulation in healthy adults 19-45 years old.
Cereb Cortex. 2007 Jun;17(6):1454-67. doi: 10.1093/cercor/bhl056. Epub 2006 Aug 17.
4
Maturation of CAEP in infants and children: a review.
Hear Res. 2006 Feb;212(1-2):212-23. doi: 10.1016/j.heares.2005.11.008. Epub 2006 Feb 9.
5
Evidence of pitch processing in the N100m component of the auditory evoked field.
Hear Res. 2006 Mar;213(1-2):88-98. doi: 10.1016/j.heares.2006.01.003. Epub 2006 Feb 7.
6
Maturation of the cortical auditory evoked potential in infants and young children.
Hear Res. 2006 Feb;212(1-2):185-202. doi: 10.1016/j.heares.2005.11.010. Epub 2006 Feb 3.
7
P1 latency as a biomarker for central auditory development in children with hearing impairment.
J Am Acad Audiol. 2005 Sep;16(8):564-73. doi: 10.3766/jaaa.16.8.5.
8
Increased right auditory cortex activity in absolute pitch possessors.
Neuroreport. 2005 Nov 7;16(16):1775-9. doi: 10.1097/01.wnr.0000183906.00526.51.
9
Event-related potential measures of consciousness: two equations with three unknowns.
Prog Brain Res. 2005;150:427-44. doi: 10.1016/S0079-6123(05)50030-X.
10
Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models.
Neuroimage. 2005 Oct 15;28(1):140-53. doi: 10.1016/j.neuroimage.2005.05.056. Epub 2005 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验