Suppr超能文献

β-淀粉样蛋白、线粒体功能障碍与突触损伤:对衰老及阿尔茨海默病认知衰退的影响

Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease.

作者信息

Reddy P Hemachandra, Beal M Flint

机构信息

Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.

出版信息

Trends Mol Med. 2008 Feb;14(2):45-53. doi: 10.1016/j.molmed.2007.12.002. Epub 2008 Jan 22.

Abstract

Recent studies of postmortem brains from Alzheimer's disease (AD) patients and transgenic mouse models of AD suggest that oxidative damage, induced by amyloid beta (Abeta), is associated with mitochondria early in AD progression. Abeta and amyloid-precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron-transport chain, increase reactive oxygen species production, cause mitochondrial damage and prevent neurons from functioning normally. Furthermore, accumulation of Abeta at synaptic terminals might contribute to synaptic damage and cognitive decline in patients with AD. Here, we describe recent studies regarding the roles of Abeta and mitochondrial function in AD progression and particularly in synaptic damage and cognitive decline.

摘要

最近对阿尔茨海默病(AD)患者的尸检大脑以及AD转基因小鼠模型的研究表明,在AD进展的早期,由β淀粉样蛋白(Aβ)诱导的氧化损伤与线粒体有关。已知Aβ和淀粉样前体蛋白定位于线粒体膜,阻断核编码的线粒体蛋白向线粒体的转运,与线粒体蛋白相互作用,破坏电子传递链,增加活性氧的产生,导致线粒体损伤并阻止神经元正常运作。此外,Aβ在突触末端的积累可能导致AD患者的突触损伤和认知能力下降。在此,我们描述了关于Aβ和线粒体功能在AD进展中,特别是在突触损伤和认知能力下降中的作用的近期研究。

相似文献

1
Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease.
Trends Mol Med. 2008 Feb;14(2):45-53. doi: 10.1016/j.molmed.2007.12.002. Epub 2008 Jan 22.
2
Amyloid-beta and mitochondria in aging and Alzheimer's disease: implications for synaptic damage and cognitive decline.
J Alzheimers Dis. 2010;20 Suppl 2(Suppl 2):S499-512. doi: 10.3233/JAD-2010-100504.
3
Inhibition of Drp1 Ameliorates Synaptic Depression, Aβ Deposition, and Cognitive Impairment in an Alzheimer's Disease Model.
J Neurosci. 2017 May 17;37(20):5099-5110. doi: 10.1523/JNEUROSCI.2385-16.2017. Epub 2017 Apr 21.
4
Regulation of Synaptic Amyloid-β Generation through BACE1 Retrograde Transport in a Mouse Model of Alzheimer's Disease.
J Neurosci. 2017 Mar 8;37(10):2639-2655. doi: 10.1523/JNEUROSCI.2851-16.2017. Epub 2017 Feb 3.
6
Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons.
Biochim Biophys Acta. 2011 Apr;1812(4):507-13. doi: 10.1016/j.bbadis.2011.01.007. Epub 2011 Jan 15.
7
Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease.
J Alzheimers Dis. 2021;84(4):1391-1414. doi: 10.3233/JAD-215139.
10
Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease.
Exp Neurol. 2009 Aug;218(2):286-92. doi: 10.1016/j.expneurol.2009.03.042. Epub 2009 Apr 7.

引用本文的文献

1
Polyphenols and Alzheimer's Disease: A Review on Molecular and Therapeutic Insights With In Silico Support.
Food Sci Nutr. 2025 Aug 28;13(9):e70496. doi: 10.1002/fsn3.70496. eCollection 2025 Sep.
2
Bioenergetic failure and oxidative stress: mitochondrial contributions to Alzheimer's disease.
Inflammopharmacology. 2025 Aug 27. doi: 10.1007/s10787-025-01916-6.
3
Systemic inflammation as a central player in the initiation and development of Alzheimer's disease.
Immun Ageing. 2025 Aug 21;22(1):33. doi: 10.1186/s12979-025-00529-5.
6
Differential Ca handling by isolated synaptic and non-synaptic mitochondria: roles of Ca buffering and efflux.
Front Synaptic Neurosci. 2025 May 27;17:1562065. doi: 10.3389/fnsyn.2025.1562065. eCollection 2025.
7
Drug delivery pathways to the central nervous system via the brain glymphatic system circumventing the blood-brain barrier.
Exploration (Beijing). 2024 Jul 9;5(2):20240036. doi: 10.1002/EXP.20240036. eCollection 2025 Apr.
9
The mechanism underlying streptozotocin injection for the development of a nontransgenic Alzheimer's disease animal model.
Open Vet J. 2025 Feb;15(2):594-600. doi: 10.5455/OVJ.2025.v15.i2.8. Epub 2025 Feb 28.
10

本文引用的文献

1
2
Effect of gender on mitochondrial toxicity of Alzheimer's Abeta peptide.
Antioxid Redox Signal. 2007 Oct;9(10):1677-90. doi: 10.1089/ars.2007.1773.
3
4
Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons.
Antioxid Redox Signal. 2007 Oct;9(10):1647-58. doi: 10.1089/ars.2007.1754.
5
Alzheimer's disease: a lesson from mitochondrial dysfunction.
Antioxid Redox Signal. 2007 Oct;9(10):1621-30. doi: 10.1089/ars.2007.1703.
6
Abeta solubility and deposition during AD progression and in APPxPS-1 knock-in mice.
Neurobiol Dis. 2007 Sep;27(3):301-11. doi: 10.1016/j.nbd.2007.06.002. Epub 2007 Jun 12.
7
Intracellular amyloid-beta in Alzheimer's disease.
Nat Rev Neurosci. 2007 Jul;8(7):499-509. doi: 10.1038/nrn2168.
9
The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease.
Nat Genet. 2007 Feb;39(2):168-77. doi: 10.1038/ng1943. Epub 2007 Jan 14.
10
Caloric intake and Alzheimer's disease. Experimental approaches and therapeutic implications.
Interdiscip Top Gerontol. 2007;35:159-75. doi: 10.1159/000096561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验