Suppr超能文献

使用最大似然 EM 重建算法进行局部放射性定量的精确性和准确性。

Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm.

机构信息

Dept. of Positron Emission Tomography, Nat. Inst. of Health, Bethesda, MD.

出版信息

IEEE Trans Med Imaging. 1994;13(3):526-37. doi: 10.1109/42.310884.

Abstract

The imaging characteristics of maximum likelihood (ML) reconstruction using the EM algorithm for emission tomography have been extensively evaluated. There has been less study of the precision and accuracy of ML estimates of regional radioactivity concentration. The authors developed a realistic brain slice simulation by segmenting a normal subject's MRI scan into gray matter, white matter, and CSF and produced PET sinogram data with a model that included detector resolution and efficiencies, attenuation, scatter, and randoms. Noisy realizations at different count levels were created, and ML and filtered backprojection (FBP) reconstructions were performed. The bias and variability of ROI values were determined. In addition, the effects of ML pixel size, image smoothing and region size reduction were assessed. Hit estimates at 3,000 iterations (0.6 sec per iteration on a parallel computer) for 1-cm(2) gray matter ROIs showed negative biases of 6%+/-2% which can be reduced to 0%+/-3% by removing the outer 1-mm rim of each ROI. FBP applied to the full-size ROIs had 15%+/-4% negative bias with 50% less noise than hit. Shrinking the FBP regions provided partial bias compensation with noise increases to levels similar to ML. Smoothing of ML images produced biases comparable to FBP with slightly less noise. Because of its heavy computational requirements, the ML algorithm will be most useful for applications in which achieving minimum bias is important.

摘要

使用 EM 算法进行发射断层成像的最大似然 (ML) 重建的成像特征已经得到了广泛的评估。对于 ML 估计区域放射性浓度的精度和准确性的研究较少。作者通过将正常受试者的 MRI 扫描分割为灰质、白质和 CSF,并使用包括探测器分辨率和效率、衰减、散射和随机的模型生成 PET 正弦图数据,从而开发了一个逼真的脑片模拟。在不同计数水平下创建了有噪声的实现,并进行了 ML 和滤波反投影 (FBP) 重建。确定了 ROI 值的偏差和可变性。此外,还评估了 ML 像素大小、图像平滑和区域尺寸减小的影响。在并行计算机上,对于 3000 次迭代(每次迭代 0.6 秒),对于 1cm2 灰质 ROI 的命中估计值显示出 6%+/-2%的负偏差,可以通过去除每个 ROI 的外 1mm 边缘将其降低至 0%+/-3%。应用于全尺寸 ROI 的 FBP 具有 15%+/-4%的负偏差,噪声比命中减少 50%。缩小 FBP 区域可以提供部分偏置补偿,但噪声增加到与 ML 相似的水平。对 ML 图像进行平滑处理会产生与 FBP 相当的偏差,但噪声略小。由于其计算要求繁重,ML 算法在需要最小偏置的应用中最有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验