Suppr超能文献

基于快速梯度的正电子发射断层成像术传输和发射图像贝叶斯重建方法。

Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images.

机构信息

Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA.

出版信息

IEEE Trans Med Imaging. 1994;13(4):687-701. doi: 10.1109/42.363099.

Abstract

The authors describe conjugate gradient algorithms for reconstruction of transmission and emission PET images. The reconstructions are based on a Bayesian formulation, where the data are modeled as a collection of independent Poisson random variables and the image is modeled using a Markov random field. A conjugate gradient algorithm is used to compute a maximum a posteriori (MAP) estimate of the image by maximizing over the posterior density. To ensure nonnegativity of the solution, a penalty function is used to convert the problem to one of unconstrained optimization. Preconditioners are used to enhance convergence rates. These methods generally achieve effective convergence in 15-25 iterations. Reconstructions are presented of an (18)FDG whole body scan from data collected using a Siemens/CTI ECAT931 whole body system. These results indicate significant improvements in emission image quality using the Bayesian approach, in comparison to filtered backprojection, particularly when reprojections of the MAP transmission image are used in place of the standard attenuation correction factors.

摘要

作者描述了用于正电子发射断层扫描(PET)发射和透射图像重建的共轭梯度算法。重建基于贝叶斯公式,其中数据建模为一组独立的泊松随机变量,图像建模使用马尔可夫随机场。共轭梯度算法通过最大化后验密度来计算图像的最大后验(MAP)估计,以获得无偏估计。为了确保解的非负性,使用惩罚函数将问题转换为无约束优化问题。使用预处理器来提高收敛速度。这些方法通常在 15-25 次迭代中实现有效收敛。使用西门子/CTI ECAT931 全身系统采集的(18)FDG 全身扫描数据进行了重建。与滤波反投影相比,这些结果表明贝叶斯方法在发射图像质量方面有显著提高,特别是当 MAP 透射图像的重投影代替标准衰减校正因子时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验