Masker W E
Biochim Biophys Acta. 1976 Aug 18;442(2):162-73. doi: 10.1016/0005-2787(76)90487-1.
Escherichia coli made permeable by treatment with toluene can perform a mode of DNA synthesis that is stimulated by ultraviolet radiation and closely resembles the resynthesis step of excision repair. If ultraviolet-irradiated toulene-treated cells are incubated in an assay mixture with ATP but without the four deoxyribonucleoside triphosphates (dNTPs) or NAD, accumulations of single-strand breaks in the DNA are detected by alkaline sucrose gradient analysis. A second incubation with the dNTP'S and NAD but without ATP produces nonconservative DNA synthesis in strains with normal levels of DNA polymerase I. However, in PolA strains, ATP must be present during the second incubation in order to produce measurable amounts of ultraviolet-stimulated DNA synthesis. These results suggest that in strains deficient in DNA polymerase I there may be two ATP-dependent steps in this repair pathway, one required for incision and one associated with resynthesis.