Mitsis Georgios D, Iannetti Gian Domenico, Smart Trevor S, Tracey Irene, Wise Richard G
Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Department of Clinical Neurology, University of Oxford, Oxford, UK.
Neuroimage. 2008 Mar 1;40(1):121-32. doi: 10.1016/j.neuroimage.2007.11.026. Epub 2007 Dec 3.
Prior hypotheses in functional brain imaging are often formulated by constraining the data analysis to regions of interest (ROIs). In this context, this approach yields higher sensitivity than whole brain analyses, which could be particularly important in drug development studies and clinical decision making. Here we systematically examine the effects of different ROI definition criteria on the results inferred from a hypothesis-driven pharmacological fMRI experiment, with the aim of maximising sensitivity and providing a recommended procedure for similar studies. In order to achieve this, we compared different criteria for selecting both anatomical and functional ROIs. Anatomical ROIs were defined (i) specifically for each subject, (ii) at group level, and (iii) using a Talairach-like atlas, in order to assess the effects of inter-subject anatomical variability. Functional ROIs (fROIs) were defined, both for each subject and at group level, by (i) selecting the voxels with the highest Z-score from each study session, and (ii) selecting an inclusive union of significantly active voxels across all sessions. A single value was used to summarise the response within each ROI. For anatomical ROIs we used the mean of the parameter estimates (beta values) of either all voxels or the top 20% active voxels. For fROIs we used the mean beta value of all voxels constituting the ROI. The results were assessed in terms of the achieved sensitivity in detecting the experimental effect. The use of single-subject anatomical ROIs combined with a summary value calculated from the top 20% fraction of active voxels was the most reliable and sensitive approach for detecting the experimental effect. The use of fROIs from individual sessions introduced unacceptable biases in the results, while the use of union fROIs yielded a lower sensitivity than anatomical ROIs. For these reasons, fROIs should be employed with caution when it is not possible to make clear anatomical prior hypotheses.
功能性脑成像中先前的假设通常是通过将数据分析限制在感兴趣区域(ROI)来制定的。在这种情况下,这种方法比全脑分析具有更高的灵敏度,这在药物开发研究和临床决策中可能尤为重要。在这里,我们系统地研究了不同ROI定义标准对从假设驱动的药理功能磁共振成像实验推断出的结果的影响,目的是最大化灵敏度并为类似研究提供推荐程序。为了实现这一目标,我们比较了选择解剖学和功能ROI的不同标准。解剖学ROI的定义如下:(i)针对每个受试者专门定义,(ii)在组水平上定义,(iii)使用类似Talairach图谱定义,以评估受试者间解剖学变异性的影响。功能ROI(fROI)在每个受试者和组水平上的定义如下:(i)从每个研究阶段中选择Z分数最高的体素,(ii)选择所有阶段中显著活跃体素的包容性并集。使用单个值来总结每个ROI内的反应。对于解剖学ROI,我们使用所有体素或前20%活跃体素的参数估计值(β值)的平均值。对于fROI,我们使用构成ROI的所有体素的平均β值。根据检测实验效应时所达到的灵敏度来评估结果。使用单受试者解剖学ROI并结合从20%活跃体素部分计算出的汇总值是检测实验效应最可靠和最灵敏的方法。使用单个阶段的fROI会在结果中引入不可接受的偏差,而使用并集fROI的灵敏度低于解剖学ROI。由于这些原因,在无法明确提出解剖学前假设时,应谨慎使用fROI。