Suppr超能文献

习惯化揭示了猕猴纹状皮层中的基本颜色机制。

Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque.

作者信息

Tailby Chris, Solomon Samuel G, Dhruv Neel T, Lennie Peter

机构信息

Center for Neural Science, New York University, New York, New York 10003, USA.

出版信息

J Neurosci. 2008 Jan 30;28(5):1131-9. doi: 10.1523/JNEUROSCI.4682-07.2008.

Abstract

Prolonged viewing of a chromatically modulated stimulus usually leads to changes in its appearance, and that of similar stimuli. These aftereffects of habituation have been thought to reflect the activity of two populations of neurons in visual cortex that have particular importance in color vision, one sensitive to red-green modulation, the other to blue-yellow, but they have not been identified. We show here, in recordings from macaque primary visual cortex (V1), that prolonged exposure to chromatic modulation reveals two fundamental mechanisms with distinctive chromatic signatures that match those of the mechanisms identified by perceptual observations. In nearly all neurons, these mechanisms contribute to both excitation and to regulatory gain controls, and as a result their habituation can have paradoxical effects on response. The mechanisms must be located near the input layers of V1, before their distinct chromatic signatures diffuse. Our observations suggest that the fundamental mechanisms do not give rise to two distinct L-M and S chromatic pathways. Rather, the mechanisms are better understood as stages in the elaboration of chromatic tuning, expressed in varying proportions in all cells in V1 (and beyond), and made accessible to physiological and perceptual investigation only through habituation.

摘要

长时间观看经过颜色调制的刺激通常会导致其外观以及类似刺激的外观发生变化。这些习惯化的后效应被认为反映了视觉皮层中两类神经元的活动,这两类神经元在颜色视觉中具有特别重要的意义,一类对红-绿调制敏感,另一类对蓝-黄敏感,但它们尚未被识别出来。我们在此通过对猕猴初级视觉皮层(V1)的记录表明,长时间暴露于颜色调制会揭示出两种具有独特颜色特征的基本机制,这些特征与通过感知观察所识别的机制相匹配。在几乎所有神经元中,这些机制既有助于兴奋,也有助于调节增益控制,因此它们的习惯化可能会对反应产生矛盾的影响。这些机制必定位于V1的输入层附近,在它们独特的颜色特征扩散之前。我们的观察结果表明,这些基本机制并不会产生两条截然不同的L-M和S颜色通路。相反,这些机制更应被理解为颜色调谐细化过程中的阶段,在V1(及其他区域)的所有细胞中以不同比例表达,并且只有通过习惯化才能进行生理和感知研究。

相似文献

1
Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque.
J Neurosci. 2008 Jan 30;28(5):1131-9. doi: 10.1523/JNEUROSCI.4682-07.2008.
2
Chromatic gain controls in visual cortical neurons.
J Neurosci. 2005 May 11;25(19):4779-92. doi: 10.1523/JNEUROSCI.5316-04.2005.
3
Chromatic mechanisms in striate cortex of macaque.
J Neurosci. 1990 Feb;10(2):649-69. doi: 10.1523/JNEUROSCI.10-02-00649.1990.
4
Representation of color stimuli in awake macaque primary visual cortex.
Neuron. 2003 Feb 20;37(4):681-91. doi: 10.1016/s0896-6273(03)00035-7.
5
Coding of chromatic spatial contrast by macaque V1 neurons.
Elife. 2022 Feb 11;11:e68133. doi: 10.7554/eLife.68133.
6
Chromatic properties of neurons in macaque area V2.
Vis Neurosci. 1997 Nov-Dec;14(6):1061-72. doi: 10.1017/s0952523800011779.
7
Some transformations of color information from lateral geniculate nucleus to striate cortex.
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4997-5002. doi: 10.1073/pnas.97.9.4997.
8
fMRI measurements of color in macaque and human.
J Vis. 2008 Sep 22;8(10):6.1-19. doi: 10.1167/8.10.6.
9
What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT.
J Neurosci. 1994 Aug;14(8):4854-70. doi: 10.1523/JNEUROSCI.14-08-04854.1994.
10
Representation of Color Surfaces in V1: Edge Enhancement and Unfilled Holes.
J Neurosci. 2015 Sep 2;35(35):12103-15. doi: 10.1523/JNEUROSCI.1334-15.2015.

引用本文的文献

1
Color contrast adaptation and compensation in color deficiencies.
J Vis. 2025 Aug 1;25(10):17. doi: 10.1167/jov.25.10.17.
2
Color appearance and the end of Hering's Opponent-Colors Theory.
Trends Cogn Sci. 2023 Sep;27(9):791-804. doi: 10.1016/j.tics.2023.06.003. Epub 2023 Jul 1.
3
Rapid adaptation of primate LGN neurons to drifting grating stimulation.
J Neurophysiol. 2023 Jun 1;129(6):1447-1467. doi: 10.1152/jn.00058.2022. Epub 2023 May 10.
4
Calibrating Vision: Concepts and Questions.
Vision Res. 2022 Dec;201. doi: 10.1016/j.visres.2022.108131. Epub 2022 Oct 28.
5
Gaining the system: limits to compensating color deficiencies through post-receptoral gain changes.
J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):A16-A25. doi: 10.1364/JOSAA.480035.
6
Explaining Orientation Adaptation in V1 by Updating the State of a Spatial Model.
Front Comput Neurosci. 2022 Feb 18;15:759254. doi: 10.3389/fncom.2021.759254. eCollection 2021.
7
Perceptual hue, lightness, and chroma are represented in a multidimensional functional anatomical map in macaque V1.
Prog Neurobiol. 2022 May;212:102251. doi: 10.1016/j.pneurobio.2022.102251. Epub 2022 Feb 16.
9
Color Tuning of Face-Selective Neurons in Macaque Inferior Temporal Cortex.
eNeuro. 2021 Apr 12;8(2). doi: 10.1523/ENEURO.0395-20.2020. Print 2021 Mar-Apr.
10
Spatio-chromatic information available from different neural layers via Gaussianization.
J Math Neurosci. 2020 Nov 11;10(1):18. doi: 10.1186/s13408-020-00095-8.

本文引用的文献

1
Cone inputs to simple and complex cells in V1 of awake macaque.
J Neurophysiol. 2007 Apr;97(4):3070-81. doi: 10.1152/jn.00965.2006. Epub 2007 Feb 15.
2
Spatial and temporal properties of cone signals in alert macaque primary visual cortex.
J Neurosci. 2006 Oct 18;26(42):10826-46. doi: 10.1523/JNEUROSCI.2091-06.2006.
3
Early and late mechanisms of surround suppression in striate cortex of macaque.
J Neurosci. 2005 Dec 14;25(50):11666-75. doi: 10.1523/JNEUROSCI.3414-05.2005.
4
Chromatic gain controls in visual cortical neurons.
J Neurosci. 2005 May 11;25(19):4779-92. doi: 10.1523/JNEUROSCI.5316-04.2005.
5
Profound contrast adaptation early in the visual pathway.
Neuron. 2004 Apr 8;42(1):155-62. doi: 10.1016/s0896-6273(04)00178-3.
6
Cone inputs in macaque primary visual cortex.
J Neurophysiol. 2004 Jun;91(6):2501-14. doi: 10.1152/jn.01043.2003. Epub 2004 Jan 28.
7
The impact of suppressive surrounds on chromatic properties of cortical neurons.
J Neurosci. 2004 Jan 7;24(1):148-60. doi: 10.1523/JNEUROSCI.3036-03.2004.
8
Representation of color stimuli in awake macaque primary visual cortex.
Neuron. 2003 Feb 20;37(4):681-91. doi: 10.1016/s0896-6273(03)00035-7.
10
Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
J Neurosci. 2000 Jun 1;20(11):4267-85. doi: 10.1523/JNEUROSCI.20-11-04267.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验