Suppr超能文献

颜色外观与赫林对立色学说的终结。

Color appearance and the end of Hering's Opponent-Colors Theory.

机构信息

Laboratory of Sensorimotor Research, National Eye Institute and National Institute of Mental Health, Bethesda, MD 20892, USA.

Department of Brain and Cognitive Sciences, M.I.T., Cambridge, MA 02139, USA; Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02114, USA.

出版信息

Trends Cogn Sci. 2023 Sep;27(9):791-804. doi: 10.1016/j.tics.2023.06.003. Epub 2023 Jul 1.

Abstract

Hering's Opponent-Colors Theory has been central to understanding color appearance for 150 years. It aims to explain the phenomenology of colors with two linked propositions. First, a psychological hypothesis stipulates that any color is described necessarily and sufficiently by the extent to which it appears reddish-versus-greenish, bluish-versus-yellowish, and blackish-versus-whitish. Second, a physiological hypothesis stipulates that these perceptual mechanisms are encoded by three innate brain mechanisms. We review the evidence and conclude that neither side of the linking proposition is accurate: the theory is wrong. We sketch out an alternative, Utility-Based Coding, by which the known retinal cone-opponent mechanisms represent optimal encoding of spectral information given competing selective pressure to extract high-acuity spatial information; and phenomenological color categories represent an adaptive, efficient, output of the brain governed by behavioral demands.

摘要

黑林的对立色觉理论已经成为 150 年来理解颜色外观的核心理论。它旨在用两个相关联的命题来解释颜色的现象学。首先,一个心理学假设规定,任何颜色都必然且充分地由其呈现出的红-绿、蓝-黄和黑-白程度来描述。其次,一个生理学假设规定,这些感知机制由三个内在的大脑机制编码。我们回顾了证据,并得出结论,连接命题的双方都不准确:该理论是错误的。我们勾勒出一个替代理论,即基于效用的编码,根据提取高空间精度信息的竞争选择性压力,已知的视锥细胞对立机制代表了光谱信息的最佳编码;而现象学颜色类别则代表了受行为需求支配的大脑的适应性、高效输出。

相似文献

1
Color appearance and the end of Hering's Opponent-Colors Theory.
Trends Cogn Sci. 2023 Sep;27(9):791-804. doi: 10.1016/j.tics.2023.06.003. Epub 2023 Jul 1.
2
Testing the Cross-Cultural Generality of Hering's Theory of Color Appearance.
Cogn Sci. 2020 Nov;44(11):e12907. doi: 10.1111/cogs.12907.
3
[Ewald Hering's opponent colors. History of an idea].
Ophthalmologe. 1992 Jun;89(3):249-52.
4
Perceiving opponent hues in color induction displays.
Seeing Perceiving. 2011;24(1):1-17. doi: 10.1163/187847510X547021.
5
[Not Available].
NTM. 1996;4(3):159-72.
7
Salience of unique hues and implications for color theory.
J Vis. 2015 Feb 6;15(2):10. doi: 10.1167/15.2.10.
10
Hering's opponent colour channels do not exist in the primate retinogeniculate pathway.
Ophthalmic Res. 1984;16(1-2):31-5. doi: 10.1159/000265290.

引用本文的文献

1
Colorimetry characteristics and color clustering of natural gem-quality spinel from Myanmar (Burma).
PLoS One. 2025 Aug 14;20(8):e0312054. doi: 10.1371/journal.pone.0312054. eCollection 2025.
2
Achromatic loci in normal and anomalous trichromats.
J Opt Soc Am A Opt Image Sci Vis. 2025 May 1;42(5):B245-B255. doi: 10.1364/JOSAA.546890.
3
Warm versus cool colors and their relation to color perception.
J Vis. 2025 Apr 1;25(4):13. doi: 10.1167/jov.25.4.13.
6
The origin of color categories.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2400273121. doi: 10.1073/pnas.2400273121. Epub 2024 Dec 30.
7
Human and primate categorical understanding of color.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2424069122. doi: 10.1073/pnas.2424069122. Epub 2025 Jan 6.
8
Temporal and spatial analysis of event-related potentials in response to color saliency differences among various color vision types.
Front Hum Neurosci. 2024 Oct 2;18:1441380. doi: 10.3389/fnhum.2024.1441380. eCollection 2024.
9
A circuit motif for color in the human foveal retina.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2405138121. doi: 10.1073/pnas.2405138121. Epub 2024 Aug 27.
10
Unique yellow shifts for small and brief stimuli in the central retina.
J Vis. 2024 Jun 3;24(6):2. doi: 10.1167/jov.24.6.2.

本文引用的文献

1
From cones to color vision: a neurobiological model that explains the unique hues.
J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):A1-A8. doi: 10.1364/JOSAA.477227.
2
Sunlight exposure cannot explain "grue" languages.
Sci Rep. 2023 Feb 1;13(1):1836. doi: 10.1038/s41598-023-28280-1.
3
Color-biased regions in the ventral visual pathway are food selective.
Curr Biol. 2023 Jan 9;33(1):134-146.e4. doi: 10.1016/j.cub.2022.11.063. Epub 2022 Dec 26.
4
Emergent color categorization in a neural network trained for object recognition.
Elife. 2022 Dec 13;11:e76472. doi: 10.7554/eLife.76472.
6
Color technology is not necessary for rich and efficient color language.
Cognition. 2022 Dec;229:105223. doi: 10.1016/j.cognition.2022.105223. Epub 2022 Sep 13.
7
A highly selective response to food in human visual cortex revealed by hypothesis-free voxel decomposition.
Curr Biol. 2022 Oct 10;32(19):4159-4171.e9. doi: 10.1016/j.cub.2022.08.009. Epub 2022 Aug 25.
9
An image reconstruction framework for characterizing initial visual encoding.
Elife. 2022 Jan 17;11:e71132. doi: 10.7554/eLife.71132.
10
Environment and culture shape both the colour lexicon and the genetics of colour perception.
Sci Rep. 2021 Sep 27;11(1):19095. doi: 10.1038/s41598-021-98550-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验