Barmack Neal H, Yakhnitsa Vadim
Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
J Neurosci. 2008 Jan 30;28(5):1140-52. doi: 10.1523/JNEUROSCI.3942-07.2008.
The output signal of Purkinje cells is conveyed by the modulated discharge of simple spikes (SSs) often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cell dendrites. Although generally accepted, this view lacks experimental support. We can address this view by controlling afferent signals that reach the cerebellum over climbing and mossy fiber pathways. Vestibular primary afferents constitute the largest mossy fiber projection to the uvula-nodulus. The discharge of vestibular primary afferent mossy fibers increases during ipsilateral roll tilt. The discharge of SSs decreases during ipsilateral roll tilt. Climbing fiber discharge [complex spikes (CSs)] increases during ipsilateral roll tilt. These observations suggest that the modulation of SSs during vestibular stimulation cannot be attributed directly to vestibular mossy fiber afferents. Rather we suggest that interneurons driven by vestibular climbing fibers may determine SS modulation. We recorded from cerebellar interneurons (granule, unipolar brush, Golgi, stellate, basket, and Lugaro cells) and Purkinje cells in the uvula-nodulus of anesthetized mice during vestibular stimulation. We identified all neuronal types by juxtacellular labeling with neurobiotin. Granule, unipolar brush, stellate, and basket cells discharge in phase with ipsilateral roll tilt and in phase with CSs. Golgi cells discharge out of phase with ipsilateral roll tilt and out of phase with CSs. The phases of stellate and basket cell discharge suggests that their activity could account for the antiphasic behavior of CSs and SSs. Because Golgi cells discharge in phase with SSs, Golgi cell activity cannot account for SS modulation. The sagittal array of Golgi cell axon terminals suggests that they contribute to the organization of discrete parasagittal vestibular zones.
浦肯野细胞的输出信号通常由简单锋电位(SSs)的调制发放来传递,而简单锋电位常被认为是由苔藓纤维-颗粒细胞-平行纤维输入到浦肯野细胞树突所引起的。尽管这一观点已被普遍接受,但缺乏实验支持。我们可以通过控制经攀缘纤维和苔藓纤维通路到达小脑的传入信号来验证这一观点。前庭初级传入纤维是向蚓垂-小结投射的最大的苔藓纤维投射。在前庭初级传入苔藓纤维同侧侧滚倾斜时放电增加。同侧侧滚倾斜时,简单锋电位放电减少。同侧侧滚倾斜时,攀缘纤维放电[复合锋电位(CSs)]增加。这些观察结果表明,前庭刺激期间简单锋电位的调制不能直接归因于前庭苔藓纤维传入。相反,我们认为由前庭攀缘纤维驱动的中间神经元可能决定简单锋电位的调制。我们在麻醉小鼠的蚓垂-小结中,在前庭刺激期间记录小脑中间神经元(颗粒细胞、单极刷状细胞、高尔基细胞、星状细胞、篮状细胞和卢加罗细胞)和浦肯野细胞的活动。我们通过用神经生物素进行细胞旁标记来识别所有神经元类型。颗粒细胞、单极刷状细胞、星状细胞和篮状细胞的放电与同侧侧滚倾斜同步,且与复合锋电位同步。高尔基细胞的放电与同侧侧滚倾斜不同步,且与复合锋电位不同步。星状细胞和篮状细胞放电的相位表明它们的活动可能是复合锋电位和简单锋电位反相行为的原因。由于高尔基细胞的放电与简单锋电位同步,因此高尔基细胞的活动不能解释简单锋电位的调制。高尔基细胞轴突终末的矢状排列表明它们有助于离散的矢状旁前庭区的组织。