Suppr超能文献

空气污染暴露的随机微环境模型。

Stochastic microenvironment models for air pollution exposure.

作者信息

Duan N

机构信息

RAND Corporation, Santa Monica, CA 90407.

出版信息

J Expo Anal Environ Epidemiol. 1991 Apr;1(2):235-57.

PMID:1824318
Abstract

Exposure assessment is a crucial link in air pollution risk assessment and management. With the recent advances in instrumentation, it has become possible to measure air pollution exposures in the vicinity of the individual human subjects, using either personal monitoring or microenvironment monitoring. For many important pollutants such as CO, NO2, and VOC, the air pollution exposure depends crucially on the location and activity of the individual: indoor versus outdoor, smoking versus not smoking, etc. The stochastic microenvironment models were developed to relate air pollution exposure to the location and activity. We review the two major existing models, the Cartesianization method (Duan, 1980, 1982, 1987) and SHAPE (Ott, 1981, 1982, 1984), and compare their assumptions and implications. We also propose a new model, the variance components model, which includes both Cartesianization and SHAPE as special cases. The variance components model considers both long-term average concentrations and short-term fluctuations. The Cartesianization focuses on long-term averages, while SHAPE focuses on short-term fluctuations. We propose to choose among the three models by examining the variance function which relates variability to averaging time. The theory is applied to the data collected from U.S. EPA's Washington CO Study, with the variance function estimated using Carroll and Ruppert's (1984) transform-both-sides regression model and Duan's (1983) smearing estimate. For the microenvironment in transit, both long-term averages and short-term fluctuations are important.

摘要

暴露评估是空气污染风险评估与管理中的关键环节。随着仪器技术的最新进展,利用个人监测或微环境监测来测量个体人类受试者附近的空气污染暴露情况已成为可能。对于许多重要污染物,如一氧化碳、二氧化氮和挥发性有机化合物,空气污染暴露情况在很大程度上取决于个体的位置和活动:室内与室外、吸烟与否等。随机微环境模型旨在将空气污染暴露与位置和活动联系起来。我们回顾了现有的两种主要模型,即笛卡尔化方法(段,1980年、1982年、1987年)和SHAPE(奥特,1981年、1982年、1984年),并比较了它们的假设和影响。我们还提出了一种新模型,即方差分量模型,它将笛卡尔化方法和SHAPE作为特殊情况包含在内。方差分量模型既考虑长期平均浓度,也考虑短期波动。笛卡尔化方法侧重于长期平均值,而SHAPE侧重于短期波动。我们建议通过研究将变异性与平均时间联系起来的方差函数在这三种模型中进行选择。该理论应用于从美国环境保护局华盛顿一氧化碳研究中收集的数据,方差函数使用卡罗尔和鲁珀特(1984年)的双侧变换回归模型以及段(1983年)的平滑估计进行估计。对于出行中的微环境,长期平均值和短期波动都很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验