CEREMADE (CNRS UMR 7534), Université de Paris-Dauphine, 75775 Paris CEDEX 16, France.
IEEE Trans Image Process. 2001;10(7):993-1000. doi: 10.1109/83.931093.
Coifman and Donoho (1995) suggested translation-invariant wavelet shrinkage as a way to remove noise from images. Basically, their technique applies wavelet shrinkage to a two-dimensional (2-D) version of the semi-discrete wavelet representation of Mallat and Zhong (1992), Coifman and Donoho also showed how the method could be implemented in O(Nlog N) operations, where there are N pixels. In this paper, we provide a mathematical framework for iterated translation-invariant wavelet shrinkage, and show, using a theorem of Kato and Masuda (1978), that with orthogonal wavelets it is equivalent to gradient descent in L (2)(I) along the semi-norm for the Besov space B(1) (1)(L(1)(I)), which, in turn, can be interpreted as a new nonlinear wavelet-based image smoothing scale space. Unlike many other scale spaces, the characterization is not in terms of a nonlinear partial differential equation.
科夫曼和多诺霍(1995)提出了平移不变小波收缩作为从图像中去除噪声的一种方法。基本上,他们的技术将小波收缩应用于 Mallat 和钟(1992)半离散小波表示的二维(2-D)版本,科夫曼和多诺霍还展示了如何在 O(NlogN)操作中实现该方法,其中 N 是像素数。在本文中,我们提供了迭代平移不变小波收缩的数学框架,并使用加藤和正田(1978)的一个定理证明,对于正交小波,它相当于沿着 Besov 空间 B(1) (1)(L(1)(I))的半范数在 L (2)(I) 中沿梯度下降,这反过来又可以解释为一种新的基于非线性小波的图像平滑尺度空间。与许多其他尺度空间不同,这种特征描述不是根据非线性偏微分方程。