Suppr超能文献

用于结构分类的监督神经网络。

Supervised neural networks for the classification of structures.

作者信息

Sperduti A, Starita A

机构信息

Dipartimento di Inf., Pisa Univ.

出版信息

IEEE Trans Neural Netw. 1997;8(3):714-35. doi: 10.1109/72.572108.

Abstract

Standard neural networks and statistical methods are usually believed to be inadequate when dealing with complex structures because of their feature-based approach. In fact, feature-based approaches usually fail to give satisfactory solutions because of the sensitivity of the approach to the a priori selection of the features, and the incapacity to represent any specific information on the relationships among the components of the structures. However, we show that neural networks can, in fact, represent and classify structured patterns. The key idea underpinning our approach is the use of the so called "generalized recursive neuron", which is essentially a generalization to structures of a recurrent neuron. By using generalized recursive neurons, all the supervised networks developed for the classification of sequences, such as backpropagation through time networks, real-time recurrent networks, simple recurrent networks, recurrent cascade correlation networks, and neural trees can, on the whole, be generalized to structures. The results obtained by some of the above networks (with generalized recursive neurons) on the classification of logic terms are presented.

摘要

标准神经网络和统计方法由于其基于特征的方法,通常被认为在处理复杂结构时是不够的。事实上,基于特征的方法通常无法给出令人满意的解决方案,因为该方法对特征的先验选择敏感,并且无法表示关于结构组件之间关系的任何特定信息。然而,我们表明神经网络实际上可以表示和分类结构化模式。支撑我们方法的关键思想是使用所谓的“广义递归神经元”,它本质上是对递归神经元结构的一种推广。通过使用广义递归神经元,为序列分类开发的所有监督网络,如时间反向传播网络、实时递归网络、简单递归网络、递归级联相关网络和神经树,总体上都可以推广到结构。给出了上述一些网络(带有广义递归神经元)在逻辑项分类上获得的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验