Suppr超能文献

使用图神经网络和扩散模型将正颌外科手术结果预测为术后头颅侧位片。

Predicting orthognathic surgery results as postoperative lateral cephalograms using graph neural networks and diffusion models.

作者信息

Kim In-Hwan, Jeong Jiheon, Kim Jun-Sik, Lim Jisup, Cho Jin-Hyoung, Hong Mihee, Kang Kyung-Hwa, Kim Minji, Kim Su-Jung, Kim Yoon-Ji, Sung Sang-Jin, Kim Young Ho, Lim Sung-Hoon, Baek Seung-Hak, Park Jae-Woo, Kim Namkug

机构信息

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

SK Telecom Incorporation, Seoul, Republic of Korea.

出版信息

Nat Commun. 2025 Mar 16;16(1):2586. doi: 10.1038/s41467-025-57669-x.

Abstract

Orthognathic surgery, or corrective jaw surgery, is performed to correct severe dentofacial deformities and is increasingly sought for cosmetic purposes. Accurate prediction of surgical outcomes is essential for selecting the optimal treatment plan and ensuring patient satisfaction. Here, we present GPOSC-Net, a generative prediction model for orthognathic surgery that synthesizes post-operative lateral cephalograms from pre-operative data. GPOSC-Net consists of two key components: a landmark prediction model that estimates post-surgical cephalometric changes and a latent diffusion model that generates realistic synthesizes post-operative lateral cephalograms images based on predicted landmarks and segmented profile lines. We validated our model using diverse patient datasets, a visual Turing test, and a simulation study. Our results demonstrate that GPOSC-Net can accurately predict cephalometric landmark positions and generate high-fidelity synthesized post-operative lateral cephalogram images, providing a valuable tool for surgical planning. By enhancing predictive accuracy and visualization, our model has the potential to improve clinical decision-making and patient communication.

摘要

正颌外科手术,即矫正颌骨手术,用于矫正严重的牙颌面畸形,并且越来越多地被用于美容目的。准确预测手术结果对于选择最佳治疗方案和确保患者满意度至关重要。在此,我们展示了GPOSC-Net,这是一种用于正颌外科手术的生成预测模型,它能根据术前数据合成术后头颅侧位片。GPOSC-Net由两个关键组件组成:一个地标预测模型,用于估计术后头影测量变化;一个潜在扩散模型,用于根据预测的地标和分割的轮廓线生成逼真的术后头颅侧位合成图像。我们使用不同的患者数据集、视觉图灵测试和模拟研究对我们的模型进行了验证。我们的结果表明,GPOSC-Net可以准确预测头影测量地标位置,并生成高保真的术后头颅侧位合成图像,为手术规划提供了一个有价值的工具。通过提高预测准确性和可视化程度,我们的模型有潜力改善临床决策和医患沟通。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验