Namboori Seema C, Graham David E
Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA.
J Bacteriol. 2008 Apr;190(8):2987-96. doi: 10.1128/JB.01970-07. Epub 2008 Feb 8.
Archaea and eukaryotes share a dolichol phosphate-dependent system for protein N-glycosylation. In both domains, the acetamido sugar N-acetylglucosamine (GlcNAc) forms part of the core oligosaccharide. However, the archaeal Methanococcales produce GlcNAc using the bacterial biosynthetic pathway. Key enzymes in this pathway belong to large families of proteins with diverse functions; therefore, the archaeal enzymes could not be identified solely using comparative sequence analysis. Genes encoding acetamido sugar-biosynthetic proteins were identified in Methanococcus maripaludis using phylogenetic and gene cluster analyses. Proteins expressed in Escherichia coli were purified and assayed for the predicted activities. The MMP1680 protein encodes a universally conserved glucosamine-6-phosphate synthase. The MMP1077 phosphomutase converted alpha-D-glucosamine-6-phosphate to alpha-D-glucosamine-1-phosphate, although this protein is more closely related to archaeal pentose and glucose phosphomutases than to bacterial glucosamine phosphomutases. The thermostable MJ1101 protein catalyzed both the acetylation of glucosamine-1-phosphate and the uridylyltransferase reaction with UTP to produce UDP-GlcNAc. The MMP0705 protein catalyzed the C-2 epimerization of UDP-GlcNAc, and the MMP0706 protein used NAD(+) to oxidize UDP-N-acetylmannosamine, forming UDP-N-acetylmannosaminuronate (ManNAcA). These two proteins are similar to enzymes used for proteobacterial lipopolysaccharide biosynthesis and gram-positive bacterial capsule production, suggesting a common evolutionary origin and a widespread distribution of ManNAcA. UDP-GlcNAc and UDP-ManNAcA biosynthesis evolved early in the euryarchaeal lineage, because most of their genomes contain orthologs of the five genes characterized here. These UDP-acetamido sugars are predicted to be precursors for flagellin and S-layer protein modifications and for the biosynthesis of methanogenic coenzyme B.
古菌和真核生物共享一种依赖于多萜醇磷酸的蛋白质N-糖基化系统。在这两个域中,乙酰氨基糖N-乙酰葡糖胺(GlcNAc)都是核心寡糖的一部分。然而,古菌甲烷球菌目利用细菌生物合成途径产生GlcNAc。该途径中的关键酶属于具有多种功能的蛋白质大家族;因此,仅使用比较序列分析无法鉴定古菌酶。利用系统发育和基因簇分析在马氏甲烷球菌中鉴定出编码乙酰氨基糖生物合成蛋白的基因。在大肠杆菌中表达的蛋白质被纯化并检测其预测活性。MMP1680蛋白编码一种普遍保守的葡糖胺-6-磷酸合酶。MMP1077磷酸变位酶将α-D-葡糖胺-6-磷酸转化为α-D-葡糖胺-1-磷酸,尽管该蛋白与古菌戊糖和葡萄糖磷酸变位酶的关系比与细菌葡糖胺磷酸变位酶的关系更密切。耐热的MJ1101蛋白催化葡糖胺-1-磷酸的乙酰化以及与UTP的尿苷酰转移酶反应以产生UDP-GlcNAc。M。MMP0705蛋白催化UDP-GlcNAc的C-2差向异构化,而MMP0706蛋白利用NAD(+)氧化UDP-N-乙酰甘露糖胺,形成UDP-N-乙酰甘露糖胺醛酸(ManNAcA)。这两种蛋白类似于用于变形菌属细菌脂多糖生物合成和革兰氏阳性菌荚膜产生的酶,表明ManNAcA具有共同的进化起源和广泛分布。UDP-GlcNAc和UDP-ManNAcA的生物合成在广古菌谱系中很早就进化出来了,因为它们的大多数基因组都包含此处鉴定的五个基因的直系同源物。预计这些UDP-乙酰氨基糖是鞭毛蛋白和S层蛋白修饰以及产甲烷辅酶B生物合成的前体。