Suppr超能文献

体外新皮层神经元对时间调制噪声输入的动态响应特性。

The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro.

作者信息

Köndgen Harold, Geisler Caroline, Fusi Stefano, Wang Xiao-Jing, Lüscher Hans-Rudolf, Giugliano Michele

机构信息

Department of Physiology, University of Bern, Bern CH-3012, Switzerland.

出版信息

Cereb Cortex. 2008 Sep;18(9):2086-97. doi: 10.1093/cercor/bhm235. Epub 2008 Feb 9.

Abstract

Cortical neurons are often classified by current-frequency relationship. Such a static description is inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. To test these model predictions, we estimated the linear response properties of layer 5 pyramidal cells by injecting a superposition of a small-amplitude sinusoidal wave and a background noise. We characterized the evoked firing probability across many stimulation trials and a range of oscillation frequencies (1-1000 Hz), quantifying response amplitude and phase-shift while changing noise statistics. We found that neurons track unexpectedly fast transients, as their response amplitude has no attenuation up to 200 Hz. This cut-off frequency is higher than the limits set by passive membrane properties (approximately 50 Hz) and average firing rate (approximately 20 Hz) and is not affected by the rate of change of the input. Finally, above 200 Hz, the response amplitude decays as a power-law with an exponent that is independent of voltage fluctuations induced by the background noise.

摘要

皮层神经元通常根据电流-频率关系进行分类。这种静态描述不足以解释神经元对随时间变化的刺激的反应。理论研究表明,单细胞动力学反应特性对于解释对快速输入瞬变的群体反应是必要的。此外,研究表明输入噪声会使反应带宽线性化并扩大,并且嘈杂的突触电流冲击与 spike 起始机制之间的相互作用决定了放电率的动力学特性。为了验证这些模型预测,我们通过注入小幅度正弦波和背景噪声的叠加来估计第 5 层锥体神经元的线性反应特性。我们在许多刺激试验和一系列振荡频率(1 - 1000 赫兹)中表征诱发的放电概率,在改变噪声统计量时量化反应幅度和相移。我们发现神经元能够追踪意外快速的瞬变,因为它们的反应幅度在高达 200 赫兹时没有衰减。这个截止频率高于由被动膜特性(约 50 赫兹)和平均放电率(约 20 赫兹)设定的极限,并且不受输入变化率的影响。最后,在 200 赫兹以上,反应幅度以幂律衰减,其指数与背景噪声引起的电压波动无关。

相似文献

1
The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro.
Cereb Cortex. 2008 Sep;18(9):2086-97. doi: 10.1093/cercor/bhm235. Epub 2008 Feb 9.
2
Dynamical response properties of neocortical neurons to conductance-driven time-varying inputs.
Eur J Neurosci. 2018 Jan;47(1):17-32. doi: 10.1111/ejn.13761. Epub 2017 Dec 2.
4
Ultrafast population encoding by cortical neurons.
J Neurosci. 2011 Aug 24;31(34):12171-9. doi: 10.1523/JNEUROSCI.2182-11.2011.
5
Dynamical response properties of neocortical neuron ensembles: multiplicative versus additive noise.
J Neurosci. 2009 Jan 28;29(4):1006-10. doi: 10.1523/JNEUROSCI.3424-08.2009.
6
Dendritic resonance in rat neocortical pyramidal cells.
J Neurophysiol. 2002 Jun;87(6):2753-9. doi: 10.1152/jn.2002.87.6.2753.
7
Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents.
J Neurophysiol. 2003 Sep;90(3):1598-612. doi: 10.1152/jn.00293.2003. Epub 2003 May 15.
8
Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.
J Neurophysiol. 1999 Apr;81(4):1531-47. doi: 10.1152/jn.1999.81.4.1531.
9
Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons.
J Neurosci. 2009 Feb 4;29(5):1285-99. doi: 10.1523/JNEUROSCI.3728-08.2009.
10
Subthreshold membrane resonance in neocortical neurons.
J Neurophysiol. 1996 Aug;76(2):683-97. doi: 10.1152/jn.1996.76.2.683.

引用本文的文献

1
A neuronal least-action principle for real-time learning in cortical circuits.
Elife. 2024 Dec 20;12:RP89674. doi: 10.7554/eLife.89674.
3
Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability.
Gene Ther. 2024 Mar;31(3-4):144-153. doi: 10.1038/s41434-023-00427-9. Epub 2023 Nov 15.
4
A mini-review: recent advancements in temporal interference stimulation in modulating brain function and behavior.
Front Hum Neurosci. 2023 Sep 14;17:1266753. doi: 10.3389/fnhum.2023.1266753. eCollection 2023.
5
Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons.
J Neurosci. 2023 May 3;43(18):3202-3218. doi: 10.1523/JNEUROSCI.1876-22.2023. Epub 2023 Mar 17.
6
Physiological noise facilitates multiplexed coding of vibrotactile-like signals in somatosensory cortex.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2118163119. doi: 10.1073/pnas.2118163119. Epub 2022 Sep 6.
7
Ultrafast population coding and axo-somatic compartmentalization.
PLoS Comput Biol. 2022 Jan 18;18(1):e1009775. doi: 10.1371/journal.pcbi.1009775. eCollection 2022 Jan.
8
Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2114549118.
9
The location of the axon initial segment affects the bandwidth of spike initiation dynamics.
PLoS Comput Biol. 2020 Jul 23;16(7):e1008087. doi: 10.1371/journal.pcbi.1008087. eCollection 2020 Jul.
10
Homogeneous and Narrow Bandwidth of Spike Initiation in Rat L1 Cortical Interneurons.
Front Cell Neurosci. 2020 Jun 17;14:118. doi: 10.3389/fncel.2020.00118. eCollection 2020.

本文引用的文献

2
Neurophysiology: Hodgkin and Huxley model--still standing?
Nature. 2007 Jan 4;445(7123):E1-2; discussion E2-3. doi: 10.1038/nature05523.
4
Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings.
J Neurophysiol. 2007 Jan;97(1):746-60. doi: 10.1152/jn.00922.2006. Epub 2006 Nov 8.
5
The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise.
Neural Comput. 2006 Nov;18(11):2592-616. doi: 10.1162/neco.2006.18.11.2592.
7
Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons.
J Neurophysiol. 2006 Dec;96(6):3448-64. doi: 10.1152/jn.00453.2006. Epub 2006 Jun 28.
8
Predicting spike timing of neocortical pyramidal neurons by simple threshold models.
J Comput Neurosci. 2006 Aug;21(1):35-49. doi: 10.1007/s10827-006-7074-5. Epub 2006 Apr 22.
9
Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential.
Nature. 2006 Jun 8;441(7094):761-5. doi: 10.1038/nature04720. Epub 2006 Apr 12.
10
Site of action potential initiation in layer 5 pyramidal neurons.
J Neurosci. 2006 Feb 8;26(6):1854-63. doi: 10.1523/JNEUROSCI.4812-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验