Suppr超能文献

静电纺丝硝化纤维素和尼龙:用于蛋白质印迹应用的新型高性能平台的设计和制造。

Electrospun nitrocellulose and nylon: design and fabrication of novel high performance platforms for protein blotting applications.

机构信息

Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

J Biol Eng. 2007 Oct 10;1:2. doi: 10.1186/1754-1611-1-2.

Abstract

BACKGROUND

Electrospinning is a non-mechanical processing strategy that can be used to process a variety of native and synthetic polymers into highly porous materials composed of nano-scale to micron-scale diameter fibers. By nature, electrospun materials exhibit an extensive surface area and highly interconnected pore spaces. In this study we adopted a biological engineering approach to ask how the specific unique advantages of the electrospinning process might be exploited to produce a new class of research/diagnostic tools.

METHODS

The electrospinning properties of nitrocellulose, charged nylon and blends of these materials are characterized.

RESULTS

Nitrocellulose electrospun from a starting concentration of < 110 mg/ml acetone deposited as 4-8 mum diameter beads; at 110 mg/ml-to-140 mg/ml starting concentrations, this polymer deposited as 100-4000 nm diameter fibers. Nylon formed fibers when electrospun from 60-140 mg/ml HFIP, fibers ranged from 120 nm-6000 nm in diameter. Electrospun nitrocellulose exhibited superior protein retention and increased sensitivity in slot blot experiments with respect to the parent nitrocellulose material. Western immunoblot experiments using fibronectin as a model protein demonstrated that electrospun nylon exhibits increased protein binding and increased dynamic range in the chemiluminescence detection of antigens than sheets of the parent starting material. Composites of electrospun nitrocellulose and electrospun nylon exhibit high protein binding activity and provide increased sensitivity for the immuno-detection of antigens.

CONCLUSION

The flexibility afforded by electrospinning process makes it possible to tailor blotting membranes to specific applications. Electrospinning has a variety of potential applications in the clinical diagnostic field of use.

摘要

背景

静电纺丝是一种非机械加工策略,可用于将各种天然和合成聚合物加工成由纳米级到微米级直径纤维组成的高度多孔材料。静电纺丝材料本质上具有大的表面积和高度互联的孔空间。在这项研究中,我们采用生物工程方法来探讨静电纺丝过程的特定独特优势如何被利用来产生一类新的研究/诊断工具。

方法

对硝化纤维素、带电尼龙以及这些材料的混合物的静电纺丝性能进行了表征。

结果

<110mg/ml 丙酮起始浓度的硝化纤维素静电纺丝沉积为 4-8µm 直径的珠状物;在 110mg/ml-140mg/ml 的起始浓度下,该聚合物沉积为 100-4000nm 直径的纤维。当从 60-140mg/ml HFIP 静电纺丝尼龙时,形成纤维,纤维直径为 120nm-6000nm。与母体硝化纤维素材料相比,静电纺丝硝化纤维素在斑点印迹实验中表现出更好的蛋白质保留率和更高的灵敏度。使用纤维连接蛋白作为模型蛋白的 Western 免疫印迹实验表明,静电纺丝尼龙在抗原的化学发光检测中表现出更高的蛋白质结合和更大的动态范围。静电纺丝硝化纤维素和静电纺丝尼龙的复合材料具有高的蛋白质结合活性,并为抗原的免疫检测提供了更高的灵敏度。

结论

静电纺丝工艺提供的灵活性使得可以根据特定应用来定制印迹膜。静电纺丝在临床诊断领域有多种潜在的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4045/2241825/c7359faa960f/1754-1611-1-2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验