Calhoun Jennifer R, Liu Weixia, Spiegel Katrin, Dal Peraro Matteo, Klein Michael L, Valentine Kathleen G, Wand A Joshua, DeGrado William F
Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Structure. 2008 Feb;16(2):210-5. doi: 10.1016/j.str.2007.11.011.
We report the solution NMR structure of a designed dimetal-binding protein, di-Zn(II) DFsc, along with a secondary refinement step employing molecular dynamics techniques. Calculation of the initial NMR structural ensemble by standard methods led to distortions in the metal-ligand geometries at the active site. Unrestrained molecular dynamics using a nonbonded force field for the metal shell, followed by quantum mechanical/molecular mechanical dynamics of DFsc, were used to relax local frustrations at the dimetal site that were apparent in the initial NMR structure and provide a more realistic description of the structure. The MD model is consistent with NMR restraints, and in good agreement with the structural and functional properties expected for DF proteins. This work demonstrates that NMR structures of metalloproteins can be further refined using classical and first-principles molecular dynamics methods in the presence of explicit solvent to provide otherwise unavailable insight into the geometry of the metal center.
我们报告了一种设计的双金属结合蛋白二锌(II)DFsc的溶液核磁共振结构,以及采用分子动力学技术的二次精修步骤。通过标准方法计算初始核磁共振结构系综导致活性位点处金属-配体几何结构出现扭曲。使用针对金属壳层的非键合力场进行无约束分子动力学,随后对DFsc进行量子力学/分子力学动力学,以缓解初始核磁共振结构中明显的双金属位点局部受挫情况,并提供对该结构更真实的描述。分子动力学模型与核磁共振约束一致,并且与DF蛋白预期的结构和功能特性高度吻合。这项工作表明,在存在明确溶剂的情况下,金属蛋白的核磁共振结构可以使用经典和第一性原理分子动力学方法进一步精修,以提供否则无法获得的关于金属中心几何结构的见解。