Suppr超能文献

从头设计四螺旋束金属蛋白酶:一种支架,多种反应活性。

De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.

机构信息

Department of Chemical Sciences , University of Napoli Federico II , Via Cintia, 26 , 80126 Napoli , Italy.

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California at San Francisco , San Francisco , California 94158-9001 , United States.

出版信息

Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.

Abstract

De novo protein design represents an attractive approach for testing and extending our understanding of metalloprotein structure and function. Here, we describe our work on the design of DF (Due Ferri or two-iron in Italian), a minimalist model for the active sites of much larger and more complex natural diiron and dimanganese proteins. In nature, diiron and dimanganese proteins protypically bind their ions in 4-Glu, 2-His environments, and they catalyze diverse reactions, ranging from hydrolysis, to O-dependent chemistry, to decarbonylation of aldehydes. In the design of DF, the position of each atom-including the backbone, the first-shell ligands, the second-shell hydrogen-bonded groups, and the well-packed hydrophobic core-was bespoke using precise mathematical equations and chemical principles. The first member of the DF family was designed to be of minimal size and complexity and yet to display the quintessential elements required for binding the dimetal cofactor. After thoroughly characterizing its structural, dynamic, spectroscopic, and functional properties, we added additional complexity in a rational stepwise manner to achieve increasingly sophisticated catalytic functions, ultimately demonstrating substrate-gated four-electron reduction of O to water. We also briefly describe the extension of these studies to the design of proteins that bind nonbiological metal cofactors (a synthetic porphyrin and a tetranuclear cluster), and a Zn/proton antiporting membrane protein. Together these studies demonstrate a successful and generally applicable strategy for de novo metalloprotein design, which might indeed mimic the process by which primordial metalloproteins evolved. We began the design process with a highly symmetrical backbone and binding site, by using point-group symmetry to assemble the secondary structures that position the amino acid side chains required for binding. The resulting models provided a rough starting point and initial parameters for the subsequent precise design of the final protein using modern methods of computational protein design. Unless the desired site is itself symmetrical, this process requires reduction of the symmetry or lifting it altogether. Nevertheless, the initial symmetrical structure can be helpful to restrain the search space during assembly of the backbone. Finally, the methods described here should be generally applicable to the design of highly stable and robust catalysts and sensors. There is considerable potential in combining the efficiency and knowledge base associated with homogeneous metal catalysis with the programmability, biocompatibility, and versatility of proteins. While the work reported here focuses on testing and learning the principles of natural metalloproteins by designing and studying proteins one at a time, there is also considerable potential for using designed proteins that incorporate both biological and nonbiological metal ion cofactors for the evolution of novel catalysts.

摘要

从头设计蛋白质代表了一种有吸引力的方法,可以测试和扩展我们对金属蛋白结构和功能的理解。在这里,我们描述了我们在 DF(Due Ferri 或意大利语中的两个铁)设计方面的工作,DF 是更大、更复杂的天然二铁和二锰蛋白活性位点的最小模型。在自然界中,二铁和二锰蛋白典型地在 4-Glu、2-His 环境中结合它们的离子,并且它们催化各种反应,从水解、O 依赖性化学、醛的脱羰基作用。在 DF 的设计中,包括骨架、第一壳层配体、第二壳层氢键基团和包装紧密的疏水性核心在内的每个原子的位置都是使用精确的数学方程和化学原理定制的。DF 家族的第一个成员被设计为最小的尺寸和复杂度,但却显示出结合双金属辅因子所需的典型元素。在彻底表征其结构、动态、光谱和功能特性后,我们以合理的逐步方式添加了额外的复杂性,以实现越来越复杂的催化功能,最终实现了底物门控的 O 对水的四电子还原。我们还简要描述了将这些研究扩展到设计结合非生物金属辅因子(合成卟啉和四核簇)和 Zn/质子反向转运膜蛋白的蛋白质。这些研究一起证明了从头金属蛋白设计的成功和普遍适用的策略,该策略确实可以模拟原始金属蛋白进化的过程。我们从高度对称的骨架和结合位点开始设计过程,使用点群对称性来组装定位结合所需氨基酸侧链的二级结构。由此产生的模型为随后使用现代计算蛋白质设计方法对最终蛋白质进行精确设计提供了粗糙的起点和初始参数。除非所需的位点本身是对称的,否则该过程需要减少对称或完全消除对称。然而,初始对称结构可以帮助在组装骨架时限制搜索空间。最后,这里描述的方法应该可以普遍应用于设计高度稳定和稳健的催化剂和传感器。将与均相金属催化相关的效率和知识库与蛋白质的可编程性、生物相容性和多功能性相结合具有相当大的潜力。虽然这里报道的工作侧重于通过设计和研究一次一个蛋白质来测试和学习天然金属蛋白的原理,但也有相当大的潜力利用包含生物和非生物金属离子辅因子的设计蛋白质来进化新的催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/097d/7362765/d193e5da0b16/nihms-1604742-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验