Suppr超能文献

机器学习在基于知识的自适应放疗中的作用

The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy.

作者信息

Tseng Huan-Hsin, Luo Yi, Ten Haken Randall K, El Naqa Issam

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Oncol. 2018 Jul 27;8:266. doi: 10.3389/fonc.2018.00266. eCollection 2018.

Abstract

With the continuous increase in radiotherapy patient-specific data from multimodality imaging and biotechnology molecular sources, knowledge-based response-adapted radiotherapy (KBR-ART) is emerging as a vital area for radiation oncology personalized treatment. In KBR-ART, planned dose distributions can be modified based on observed cues in patients' clinical, geometric, and physiological parameters. In this paper, we present current developments in the field of adaptive radiotherapy (ART), the progression toward KBR-ART, and examine several applications of static and dynamic machine learning approaches for realizing the KBR-ART framework potentials in maximizing tumor control and minimizing side effects with respect to individual radiotherapy patients. Specifically, three questions required for the realization of KBR-ART are addressed: (1) what knowledge is needed; (2) how to estimate RT outcomes accurately; and (3) how to adapt optimally. Different machine learning algorithms for KBR-ART application shall be discussed and contrasted. Representative examples of different KBR-ART stages are also visited.

摘要

随着来自多模态成像和生物技术分子源的放疗患者特异性数据不断增加,基于知识的适应性放疗(KBR-ART)正在成为放射肿瘤学个性化治疗的一个重要领域。在KBR-ART中,可以根据患者临床、几何和生理参数中观察到的线索来修改计划剂量分布。在本文中,我们介绍了自适应放疗(ART)领域的当前发展、向KBR-ART的进展,并研究了静态和动态机器学习方法的几种应用,以实现KBR-ART框架在最大化肿瘤控制和最小化个体放疗患者副作用方面的潜力。具体而言,解决了实现KBR-ART所需的三个问题:(1)需要哪些知识;(2)如何准确估计放疗结果;(3)如何进行最佳调整。将讨论和对比用于KBR-ART应用的不同机器学习算法。还将介绍不同KBR-ART阶段的代表性示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验