Yan Kunxian, Luo Xiangyu, Ye Lei, Geng Wenping, He Jian, Mu Jiliang, Hou Xiaojuan, Zan Xiang, Ma Jiuhong, Li Fei, Zhang Le, Chou Xiujian
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051, China.
Shanxi Key Laboratory of Ferroelectric Physical Micro-nano Devices and Systems, North University of China, Taiyuan, 030051, China.
Sci Rep. 2025 May 12;15(1):16392. doi: 10.1038/s41598-025-01015-0.
Epilepsy is a neurological disorder characterized by recurrent seizures caused by excessive electrical discharges in brain cells, posing significant diagnostic and therapeutic challenges. Dynamic brain network analysis via electroencephalography (EEG) has emerged as a powerful tool for capturing transient functional connectivity changes, offering advantages over static networks. In this study, we propose a Dynamic Temporal-Spatial Graph Attention Network (DTS-GAN) to address the limitations of fixed-topology graph models in analysing time-varying brain networks. By integrating graph signal processing with a hybrid deep learning framework, DTS-GAN collaboratively extracts spatiotemporal features through two key modules: an LSTM-based temporal encoder to model long-term dependencies in EEG sequences, and a dynamic graph attention network with probabilistic Gaussian connectivity, enabling adaptive learning of transient functional interactions across electrode nodes. Experiments on the TUSZ dataset demonstrate that DTS-GAN achieves 89-91% accuracy and a weighted F1-score of 87-91% in classifying seven seizure types, significantly outperforming baseline models. The multi-head attention mechanism and dynamic graph generation strategy effectively resolve the temporal variability of functional connectivity. These results highlight the potential of DTS-GAN in providing precise and automated seizure detection, serving as a robust tool for clinical EEG analysis.
癫痫是一种神经系统疾病,其特征是由脑细胞中过度放电引起的反复发作,带来了重大的诊断和治疗挑战。通过脑电图(EEG)进行动态脑网络分析已成为捕捉瞬态功能连接变化的强大工具,相对于静态网络具有优势。在本研究中,我们提出了一种动态时空图注意力网络(DTS-GAN),以解决固定拓扑图模型在分析时变脑网络方面的局限性。通过将图信号处理与混合深度学习框架相结合,DTS-GAN通过两个关键模块协同提取时空特征:一个基于长短期记忆网络(LSTM)的时间编码器,用于对EEG序列中的长期依赖性进行建模;以及一个具有概率高斯连接性的动态图注意力网络,能够跨电极节点自适应学习瞬态功能相互作用。在TUSZ数据集上的实验表明,DTS-GAN在对七种癫痫发作类型进行分类时,准确率达到89-91%,加权F1分数为87-91%,显著优于基线模型。多头注意力机制和动态图生成策略有效地解决了功能连接的时间可变性。这些结果凸显了DTS-GAN在提供精确和自动癫痫发作检测方面的潜力,可作为临床EEG分析的强大工具。