Suppr超能文献

Efficient preconditioning strategies for accelerating GMRES in block-structured nonlinear systems for image deblurring.

作者信息

Khalid Rizwan, Ahmad Shahbaz, Medani Mohamed, Said Yahia, Ali Iftikhar

机构信息

Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan.

Applied College of Muhayil Aseer, King Khalid University, Muhayil Aseer, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 25;20(6):e0322146. doi: 10.1371/journal.pone.0322146. eCollection 2025.

Abstract

We propose an efficient preconditioning strategy to accelerate the convergence of Krylov subspace methods, specifically for solving complex nonlinear systems with a block five-by-five structure, commonly found in cell-centered finite difference discretizations for image deblurring using mean curvature techniques. Our method introduces two innovative preconditioned matrices, analyzed spectrally to show a favorable eigenvalue distribution that accelerates convergence in the Generalized Minimal Residual (GMRES) method. This technique significantly improves image quality, as measured by peak signal-to-noise ratio (PSNR), and demonstrates faster convergence compared to traditional GMRES, requiring minimal CPU time and few iterations for exceptional deblurring performance. The preconditioned matrices' eigenvalues cluster around 1, indicating a beneficial spectral distribution. The source code is available at https://github.com/shahbaz1982/Precondition-Matrix.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8b/12193019/cad74b00a131/pone.0322146.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验