Suppr超能文献

非局部正则化反问题:一个统一的变分框架。

Nonlocal regularization of inverse problems: a unified variational framework.

机构信息

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14623, USA.

出版信息

IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.

Abstract

We introduce a unifying energy minimization framework for nonlocal regularization of inverse problems. In contrast to the weighted sum of square differences between image pixels used by current schemes, the proposed functional is an unweighted sum of inter-patch distances. We use robust distance metrics that promote the averaging of similar patches, while discouraging the averaging of dissimilar patches. We show that the first iteration of a majorize-minimize algorithm to minimize the proposed cost function is similar to current nonlocal methods. The reformulation thus provides a theoretical justification for the heuristic approach of iterating nonlocal schemes, which re-estimate the weights from the current image estimate. Thanks to the reformulation, we now understand that the widely reported alias amplification associated with iterative nonlocal methods are caused by the convergence to local minimum of the nonconvex penalty. We introduce an efficient continuation strategy to overcome this problem. The similarity of the proposed criterion to widely used nonquadratic penalties (e.g., total variation and lp semi-norms) opens the door to the adaptation of fast algorithms developed in the context of compressive sensing; we introduce several novel algorithms to solve the proposed nonlocal optimization problem. Thanks to the unifying framework, these fast algorithms are readily applicable for a large class of distance metrics.

摘要

我们引入了一个统一的能量最小化框架,用于反问题的非局部正则化。与当前方案中使用的图像像素平方差的加权和不同,所提出的函数是补丁间距离的无权重和。我们使用稳健的距离度量来促进相似补丁的平均化,同时抑制不相似补丁的平均化。我们表明,极大极小算法的第一次迭代来最小化所提出的代价函数类似于当前的非局部方法。因此,该重构为迭代非局部方案的启发式方法提供了理论依据,该方法从当前图像估计中重新估计权重。由于这种重构,我们现在理解到与迭代非局部方法相关的广泛报道的别名放大是由非凸惩罚的局部最小化引起的。我们引入了一种有效的连续策略来克服这个问题。所提出的准则与广泛使用的非二次惩罚(例如全变差和 lp 半范数)的相似性为在压缩感知背景下开发的快速算法的适应打开了大门;我们引入了几种新的算法来解决所提出的非局部优化问题。由于统一的框架,这些快速算法很容易适用于一大类距离度量。

相似文献

1
Nonlocal regularization of inverse problems: a unified variational framework.非局部正则化反问题:一个统一的变分框架。
IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.
2
Efficient nonlocal means for denoising of textural patterns.用于纹理模式去噪的高效非局部均值方法。
IEEE Trans Image Process. 2008 Jul;17(7):1083-92. doi: 10.1109/TIP.2008.924281.
6
BM3D frames and variational image deblurring.BM3D 帧和变分图像去模糊。
IEEE Trans Image Process. 2012 Apr;21(4):1715-28. doi: 10.1109/TIP.2011.2176954. Epub 2011 Nov 22.
7
Vectorial total variation-based regularization for variational image registration.基于向量全变差的变分图像配准正则化。
IEEE Trans Image Process. 2013 Nov;22(11):4551-9. doi: 10.1109/TIP.2013.2274749. Epub 2013 Jul 24.
8
SENSE reconstruction with nonlocal TV regularization.采用非局部总变差正则化的SENSE重建
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1032-5. doi: 10.1109/IEMBS.2009.5335343.
9
Design and analysis of optimization methods for subdivision surface fitting.细分曲面拟合优化方法的设计与分析
IEEE Trans Vis Comput Graph. 2007 Sep-Oct;13(5):878-90. doi: 10.1109/tvcg.2007.1064.
10
Semi-blind image restoration via Mumford-Shah regularization.基于Mumford-Shah正则化的半盲图像恢复
IEEE Trans Image Process. 2006 Feb;15(2):483-93. doi: 10.1109/tip.2005.863120.

引用本文的文献

3
CLUSTERING OF DATA WITH MISSING ENTRIES.带有缺失条目的数据聚类
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:2831-2835. doi: 10.1109/icassp.2018.8462602. Epub 2018 Sep 13.
4
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
5
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
6
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.
10

本文引用的文献

2
A fast multilevel algorithm for wavelet-regularized image restoration.一种用于小波正则化图像恢复的快速多级算法。
IEEE Trans Image Process. 2009 Mar;18(3):509-23. doi: 10.1109/TIP.2008.2008073. Epub 2009 Feb 2.
4
Efficient nonlocal means for denoising of textural patterns.用于纹理模式去噪的高效非局部均值方法。
IEEE Trans Image Process. 2008 Jul;17(7):1083-92. doi: 10.1109/TIP.2008.924281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验