Suppr超能文献

一种基于贝叶斯理论的三维磁共振成像去噪算法。

A 3D MRI denoising algorithm based on Bayesian theory.

作者信息

Baselice Fabio, Ferraioli Giampaolo, Pascazio Vito

机构信息

Dipartimento di Ingegneria, University of Naples Parthenope, Centro Direzionale di Napoli, Is. C4, 80143, Naples, Italy.

Dipartimento di Scienze e Tecnologie, University of Naples Parthenope, Centro Direzionale di Napoli, Is. C4, 80143, Naples, Italy.

出版信息

Biomed Eng Online. 2017 Feb 7;16(1):25. doi: 10.1186/s12938-017-0319-x.

Abstract

BACKGROUND

Within this manuscript a noise filtering technique for magnetic resonance image stack is presented. Magnetic resonance images are usually affected by artifacts and noise due to several reasons. Several denoising approaches have been proposed in literature, with different trade-off between computational complexity, regularization and noise reduction. Most of them is supervised, i.e. requires the set up of several parameters. A completely unsupervised approach could have a positive impact on the community.

RESULTS

The method exploits Markov random fields in order to implement a 3D maximum a posteriori estimator of the image. Due to the local nature of the considered model, the algorithm is able do adapt the smoothing intensity to the local characteristics of the images by analyzing the 3D neighborhood of each voxel. The effect is a combination of details preservation and noise reduction. The algorithm has been compared to other widely adopted denoising methodologies in MRI. Both simulated and real datasets have been considered for validation. Real datasets have been acquired at 1.5 and 3 T. The methodology is able to provide interesting results both in terms of noise reduction and edge preservation without any supervision.

CONCLUSIONS

A novel method for regularizing 3D MR image stacks is presented. The approach exploits Markov random fields for locally adapt filter intensity. Compared to other widely adopted noise filters, the method has provided interesting results without requiring the tuning of any parameter by the user.

摘要

背景

本文介绍了一种用于磁共振图像堆栈的噪声滤波技术。磁共振图像通常由于多种原因受到伪影和噪声的影响。文献中已经提出了几种去噪方法,在计算复杂度、正则化和降噪之间存在不同的权衡。其中大多数是有监督的,即需要设置几个参数。一种完全无监督的方法可能会对该领域产生积极影响。

结果

该方法利用马尔可夫随机场来实现图像的三维最大后验估计器。由于所考虑模型的局部性质,该算法能够通过分析每个体素的三维邻域,使平滑强度适应图像的局部特征。效果是细节保留和降噪的结合。该算法已与MRI中其他广泛采用的去噪方法进行了比较。模拟数据集和真实数据集均已用于验证。真实数据集是在1.5T和3T下采集的。该方法能够在无需任何监督的情况下,在降噪和边缘保留方面提供有趣的结果。

结论

提出了一种用于正则化三维磁共振图像堆栈的新方法。该方法利用马尔可夫随机场局部调整滤波器强度。与其他广泛采用的噪声滤波器相比,该方法无需用户调整任何参数即可提供有趣的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56a6/5297150/cfd500517d5a/12938_2017_319_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验