School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China.
Phys Med Biol. 2012 Aug 7;57(15):5035-55. doi: 10.1088/0031-9155/57/15/5035.
Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled '3.5D' image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated (11)C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV and DVR images. The method was also tested on a 90 min (11)C-raclopride patient study performed on the high-resolution research tomography. The proposed method was shown to outperform the conventional method in visual as well as quantitative accuracy improvements (in terms of noise versus regional DVR value performance).
标准的三维动态正电子发射断层扫描(PET)成像由独立的帧图像重建组成,然后将适当的动力学模型应用于体素或感兴趣区域(ROI)的时间活动曲线。相比之下,新兴的 4D PET 重建领域试图超越这种方案,并在图像重建任务中纳入来自多个帧的信息。在这里,我们提出了一种新的重建框架,旨在通过引入基于体素动力学的先验信息来提高参数图像的定量准确性,这些先验信息是通过对初步重建的动态图像进行聚类来定义具有相似动力学的体素聚类邻域生成的。然后,对每个帧应用简单的最大后验(MAP)3D PET 重建;因此,该方法被标记为“3.5D”图像重建。基于聚类的先验的使用具有进一步提高动态 PET 成像定量性能的优势,因为:(a) 聚类中的体素通常比传统的局部邻域中的体素多,并且(b) 具有不同动力学的相邻体素不太可能聚类在一起。使用现实的模拟(11)C-racopride 动态 PET 数据,研究了所提出方法的定量性能。从动态图像重建中使用 (a) 最大似然期望最大化 (MLEM) 估计参数分布容积 (DV) 和 DV 比 (DVR) 图像,以及使用 (b) 二次先验 (QP-MAP)、(c) 格林先验 (GP-MAP) 和 (d、e) 两种提出的基于聚类的先验 (CP-U-MAP 和 CP-W-MAP) 进行 MAP 重建,然后进行图形建模,并对 11 个 ROI 进行定性和定量比较。总体而言,所提出的动态 PET 重建方法在参数 DV 和 DVR 图像的视觉和定量准确性方面都取得了显著的改进(在噪声与偏差性能方面)。该方法还在高分辨率研究断层扫描上进行的 90 分钟(11)C-racopride 患者研究中进行了测试。结果表明,该方法在视觉和定量准确性改进方面(在噪声与区域 DVR 值性能方面)优于传统方法。