Murase M
Division of Information Dynamics, Tokyo Metropolitan Institute of Gerontology, Japan.
J Theor Biol. 1991 Mar 21;149(2):181-202. doi: 10.1016/s0022-5193(05)80276-0.
The formal excitable dynein model proposed by Murase et al. (1989, J. theor. Biol. 139, 413-430) is modified to produce large-amplitude oscillations and excitability. The present model assumes that (i) each dynein arm has multiple active sites, which are distributed along most of the 24-nm distance between adjacent B-subtubule attachment sites; and (ii) any given dynein molecule tends to produce force continuously during interdoublet sliding in one direction and to produce little force during sliding in the opposite direction. Since no sliding motion occurs without superthreshold perturbations in the form of the sliding displacement, this new model also possesses an excitable nature. Once passive elastic components (e.g. nexin links and radial spokes) are incorporated into this model, oscillations with large amplitudes result. To test the ability of the model for bend propagation without a curvature-control mechanism, forced oscillations are applied to the basal end of the flagellum by the sliding displacement. It is found that bend propagation can occur even in the absence of a curvature-control mechanism.
村濑等人(1989年,《理论生物学杂志》139卷,413 - 430页)提出的形式上可兴奋的动力蛋白模型被修改以产生大幅度振荡和兴奋性。当前模型假设:(i)每个动力蛋白臂有多个活性位点,这些位点沿着相邻B亚微管附着位点之间24纳米的大部分距离分布;(ii)任何给定的动力蛋白分子在双微管向一个方向滑动时倾向于持续产生力,而在向相反方向滑动时产生的力很小。由于没有以滑动位移形式的超阈值扰动就不会发生滑动运动,这个新模型也具有可兴奋的性质。一旦将被动弹性成分(如连接蛋白和辐条)纳入该模型,就会产生大幅度振荡。为了测试该模型在没有曲率控制机制的情况下弯曲传播的能力,通过滑动位移对鞭毛基部施加强迫振荡。结果发现,即使在没有曲率控制机制的情况下也能发生弯曲传播。