Nishiguchi Yoshikazu, Miwa Tetsuya, Abe Fumiyoshi
Faculty of Pharmaceutical Science, Toho University, Toho, Japan.
Extremophiles. 2008 May;12(3):477-80. doi: 10.1007/s00792-008-0140-3. Epub 2008 Feb 26.
The tolerance of abyssal pressures likely depends on adaptive modifications of fish proteins. However, structural modifications of proteins which allow functioning at high pressure remain unclear. We compared the activities of lactate dehydrogenase (LDH), an important enzyme in glycolytic reaction, in three hagfishes inhabiting different depths under increased pressure. LDH in Eptatretus okinoseanus, found at a depth of 1,000 m, was highly active at high pressure of 100 MPa maintaining the activity at 70% of that at 0.1 MPa. In contrast, LDH activity in Paramyxine atami, found at 250-400 m, decreased to 55% at 15 MPa, and that in Eptatretus burgeri, found at 45-60 m, was completely absent at 5 MPa. The result suggests that subunit interaction of the LDH-tetramer is more stable in E. okinoseanus than that in P. atami and E. burgeri under high-pressure conditions. We found six amino acid substitutions between the three LDH primary structures. Accordingly, these amino acid residues are likely to contribute to the stability of the E. okinoseanus LDH under high-pressure conditions.
深海压力耐受性可能取决于鱼类蛋白质的适应性修饰。然而,蛋白质在高压下仍能发挥功能的结构修饰尚不清楚。我们比较了三种生活在不同深度的盲鳗在压力增加时,糖酵解反应中的一种重要酶——乳酸脱氢酶(LDH)的活性。栖息在1000米深处的冲之盲鳗(Eptatretus okinoseanus)中的LDH,在100兆帕的高压下具有高活性,其活性维持在0.1兆帕时的70%。相比之下,生活在250 - 400米深处的阿氏副盲鳗(Paramyxine atami)中的LDH活性,在15兆帕时降至55%,而生活在45 - 60米深处的蒲氏黏盲鳗(Eptatretus burgeri)中的LDH活性在5兆帕时完全丧失。结果表明,在高压条件下,冲之盲鳗中LDH四聚体的亚基相互作用比阿氏副盲鳗和蒲氏黏盲鳗中的更稳定。我们在三种LDH一级结构之间发现了六个氨基酸替换。因此,这些氨基酸残基可能有助于冲之盲鳗的LDH在高压条件下的稳定性。