Suppr超能文献

切换酿酒酵母利用蔗糖的模式。

Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

机构信息

Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.

出版信息

Microb Cell Fact. 2008 Feb 27;7:4. doi: 10.1186/1475-2859-7-4.

Abstract

BACKGROUND

Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures.

RESULTS

We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source.

CONCLUSION

Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.

摘要

背景

在以生物质为导向的过程中,好氧培养的酿酒酵母会出现代谢溢出,这是一种不理想的特性。这是由于糖消耗率升高,导致高底物转化率为乙醇和其他副产物,严重影响细胞生理、生物过程性能和生物质产量。分批补料培养是一种经典的生物加工方法,通过外部添加糖来控制蔗糖消耗速率,目的是使发酵罐中的糖浓度保持在较低水平,从而防止酵母发酵糖。然而,分批补料发酵存在一些缺点,可以通过相对较高初始糖浓度(例如 20g/L)的简单分批培养来克服。在这项研究中,通过基因工程缺失了缺乏转化酶活性的酿酒酵母菌株中的蔗糖透过酶,通过低亲和力和低容量的蔗糖-H+协同转运活性将蔗糖转运到细胞内,并分析了该菌株在简单分批培养中的生长动力学和生物质产量。

结果

我们从缺乏转化酶的酿酒酵母菌株基因组中删除了由 AGT1 基因编码的高亲和力蔗糖-H+协同转运蛋白。由于 MALx1 麦芽糖透性酶介导的低亲和力和低容量蔗糖-H+协同转运活性及其细胞质麦芽糖酶的进一步水解,该菌株仍能有效地在蔗糖上生长。尽管该工程酵母菌株消耗蔗糖的速度比亲本酵母菌株慢,但由于碳源的呼吸作用增强,细胞在蔗糖上生长效率更高。因此,当使用 20g/L 蔗糖作为碳源进行简单分批培养时,该工程酵母菌株产生的乙醇减少了 1.5 至 2 倍,生物质产量增加了 1.5 至 2 倍。

结论

通过对蔗糖摄取系统进行工程改造,在 20g/L 蔗糖的分批培养中实现了更高的细胞密度。通过有效降低酵母细胞对蔗糖的摄取,避免了代谢溢出,同时减少了乙醇的产生,从而实现了这一结果。在更复杂的传统蔗糖限制分批补料培养中,使用这种改良的酵母菌株进行更简单的分批培养模式可能是一种可行的选择,以用于酿酒酵母的生物质导向过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edfa/2268662/e7afbe2a44c5/1475-2859-7-4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验