de Valk Sophie C, Bouwmeester Susan E, de Hulster Erik, Mans Robert
Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands.
Biotechnol Biofuels Bioprod. 2022 May 7;15(1):47. doi: 10.1186/s13068-022-02145-7.
In the yeast Saccharomyces cerevisiae, which is widely applied for industrial bioethanol production, uptake of hexoses is mediated by transporters with a facilitated diffusion mechanism. In anaerobic cultures, a higher ethanol yield can be achieved when transport of hexoses is proton-coupled, because of the lower net ATP yield of sugar dissimilation. In this study, the facilitated diffusion transport system for hexose sugars of S. cerevisiae was replaced by hexose-proton symport.
Introduction of heterologous glucose- or fructose-proton symporters in an hxt yeast background strain (derived from CEN.PK2-1C) restored growth on the corresponding sugar under aerobic conditions. After applying an evolutionary engineering strategy to enable anaerobic growth, the hexose-proton symporter-expressing strains were grown in anaerobic, hexose-limited chemostats on synthetic defined medium, which showed that the biomass yield of the resulting strains was decreased by 44.0-47.6%, whereas the ethanol yield had increased by up to 17.2% (from 1.51 to 1.77 mol mol hexose) compared to an isogenic strain expressing the hexose uniporter HXT5. To apply this strategy to increase the ethanol yield on sucrose, we constructed a platform strain in which all genes encoding hexose transporters, disaccharide transporters and disaccharide hydrolases were deleted, after which a combination of a glucose-proton symporter, fructose-proton symporter and extracellular invertase (SUC2) were introduced. After evolution, the resulting strain exhibited a 16.6% increased anaerobic ethanol yield (from 1.51 to 1.76 mol mol hexose equivalent) and 46.6% decreased biomass yield on sucrose.
This study provides a proof-of-concept for the replacement of the endogenous hexose transporters of S. cerevisiae by hexose-proton symport, and the concomitant decrease in ATP yield, to greatly improve the anaerobic yield of ethanol on sugar. Moreover, the sugar-negative platform strain constructed in this study acts as a valuable starting point for future studies on sugar transport or development of cell factories requiring specific sugar transport mechanisms.
在广泛应用于工业生物乙醇生产的酿酒酵母中,己糖的摄取是由具有易化扩散机制的转运蛋白介导的。在厌氧培养中,由于糖异化的净ATP产量较低,当己糖的转运是质子偶联时,可以实现更高的乙醇产量。在本研究中,酿酒酵母的己糖易化扩散转运系统被己糖-质子同向转运所取代。
在hxt酵母背景菌株(源自CEN.PK2-1C)中引入异源葡萄糖或果糖-质子同向转运蛋白,恢复了需氧条件下在相应糖上的生长。在应用进化工程策略以实现厌氧生长后,表达己糖-质子同向转运蛋白的菌株在合成限定培养基上的厌氧、己糖限制恒化器中生长,结果表明,与表达己糖单向转运蛋白HXT5的同基因菌株相比,所得菌株的生物量产量降低了44.0-47.6%,而乙醇产量提高了17.2%(从1.51 mol/mol己糖提高到1.77 mol/mol己糖)。为了应用该策略提高蔗糖上的乙醇产量,我们构建了一个平台菌株,其中所有编码己糖转运蛋白、二糖转运蛋白和二糖水解酶的基因均被删除,之后引入了葡萄糖-质子同向转运蛋白、果糖-质子同向转运蛋白和胞外转化酶(SUC2)的组合。进化后,所得菌株在蔗糖上的厌氧乙醇产量提高了16.6%(从1.51 mol/mol己糖当量提高到1.76 mol/mol己糖当量),生物量产量降低了46.6%。
本研究为用己糖-质子同向转运取代酿酒酵母内源性己糖转运蛋白以及伴随的ATP产量降低以大幅提高糖上的厌氧乙醇产量提供了概念验证。此外,本研究构建的无糖平台菌株是未来糖转运研究或需要特定糖转运机制的细胞工厂开发的有价值的起点。