Kim Jeong-A, Wei Yongzhong, Sowers James R
Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.
Circ Res. 2008 Feb 29;102(4):401-14. doi: 10.1161/CIRCRESAHA.107.165472.
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
胰岛素抵抗是肥胖、2型糖尿病以及心血管代谢综合征各组分(包括高血压和血脂异常)的特征,这些因素共同导致心血管疾病的重大风险。胰岛素在经典胰岛素靶组织(如骨骼肌、脂肪和肝脏)中的代谢作用,以及在非经典靶组织(如心血管组织)中的作用,有助于解释为何胰岛素抵抗和代谢失调在心血管代谢综合征和心血管疾病的发病机制中处于核心地位。葡萄糖和脂质代谢在很大程度上依赖线粒体在细胞内产生能量。因此,当营养物质氧化效率低下时,ATP生成/氧消耗的比率较低,导致超氧阴离子生成增加。活性氧的形成可能会产生适应不良的后果,增加诱变率并刺激促炎过程。除了活性氧的形成,遗传因素、衰老和线粒体生物合成减少均会导致线粒体功能障碍。这些因素也会导致经典和非经典胰岛素靶组织出现胰岛素抵抗。线粒体功能障碍引发的胰岛素抵抗可能导致代谢和心血管异常,进而增加心血管疾病的发生风险。此外,改善线粒体功能的干预措施也能改善胰岛素抵抗。总体而言,这些观察结果表明线粒体功能障碍可能是胰岛素抵抗及相关并发症的主要原因。在本综述中,我们讨论了与经典胰岛素反应性组织以及心血管组织中胰岛素抵抗病理生理学相关的线粒体功能障碍机制。